Overview of Epidemiological Study Designs

Madhukar Pai, MD, PhD
McGill University
madhukar.pai@mcgill.ca
Exposures & Outcomes

Exposure → Outcome

Confounders & effect modifiers (covariates)
Exposures & Outcomes

- A major goal of epi research is to explain patterns of disease occurrence and causation (etioloogy)
- Epi measurements are aimed at quantifying 3 things: exposures, confounders & outcomes
- Once quantified, the association between exposure and outcome is the central focus of epi studies
- There are many ways of evaluating the association between an exposure and an outcome: these are the different study designs
The best epidemiologic study will be one that captures the causal effect of interest with minimal distortion (error)

Adapted from: Maclure, M, Schneeweis S. Epidemiology 2001;12:114-122.
Classification of study designs (Version 8)
(Qualitative studies are not included in this scheme; categories shown are not necessarily mutually exclusive, hybrid and mixed designs are possible)

Descriptive studies
- designed to describe occurrence of disease by time, place and person

Experimental (intervention studies)
- investigator intentionally alters one or more factors to study the effects of so doing

Quasi-experimental
- investigator lacks full control over the intervention but conducted the study as if it were an experiment

Non-experimental (observational studies)
- does not involve intervention, investigator observes without intervention other than to record, count, and analyze results

Uncontrolled trials
- experimental trials without control or comparison groups (e.g. phase I/II clinical trials)
 - Prevalence surveys
 - Case-series
 - Surveillance data
 - Descriptive analyses of routinely collected data (registries, mortality data, etc.)

Controlled trials
- trials with control groups (e.g. phase III clinical trials)
 - Controlled trials can be clinical trials (unit of randomization is an individual) or community/field trials (unit of randomization is a community or cluster)
 - Cohort (retrospective and prospective)
 - Case-control
 - Cross-sectional
 - Ecological
 - Case-case or case only
 - Hybrid designs (e.g. nested case-control, case-cohort, case-crossover, serial cross-sectional)

Randomized (RCTs)
- interventions allocated randomly (all participants or clusters have the same chance of being allocated to each of the study groups)

Quasi-randomized
- allocation done using schemes such as: according to date of birth (odd or even), number of the hospital record, date at which they are invited to participate in the study (odd or even), or alternatively into the different study groups

Non-randomized
- allocation to different groups done arbitrarily (without any underlying random process)

Note: Systematic reviews and meta-analyses involve the secondary analysis and synthesis of original studies and are not considered in this classification system

Madhukar Pai, McGill University, Montreal (madhukar.pai@mcgill.ca)
Kristian Filion, McGill University, Montreal (kristian.filion@mcgill.ca)
Figure 5-1. Major Epidemiologic Study Designs.

Figure 1: Algorithm for classification of types of clinical research

Prospective vs. Retrospective studies

- NOT a good classification
- Need to separate: direction of the exposure/outcome analysis vs. how subjects were recruited into the study

- Also, “longitudinal or follow-up study” is not very informative:
 - RCTs are longitudinal
 - Cohort studies are longitudinal
Populations vs. cohorts

- A population is an aggregate of people
- 2 ways of defining a population based on membership:
 - based on a membership-defining event, with the membership commencing as of that event and lasting for ever thereafter
 - This is a “cohort”, a closed population, one that is closed for exit (e.g. a cohort of Nobel laureates or rock stars)
 - based on a membership-defining state, for the duration of that state, defining an open population, one that is open for exit, a population that is dynamic in the meaning of turnover of membership
- Cohort = closed for exit [some call it “closed or fixed population”]
- Population = open for exit [some call it “open or dynamic population”]

[Source: Miettinen OS, 2007]
Cohort

The Legion was split into 10 Cohorts.

The Cohorts were divided into Centuries. The First Cohort contained five centuries of 160 'crack troops.' The other cohorts contained six centuries of 80 men.

The centurion in charge of the First Cohort was called the Primus Pilus. He was the best!

Figure 1: An early cohort in search of favourable outcome

<table>
<thead>
<tr>
<th>Cohort</th>
<th>1st cohort</th>
<th>2nd cohort</th>
<th>3rd cohort</th>
<th>4th cohort</th>
<th>5th cohort</th>
<th>6th cohort</th>
<th>7th cohort</th>
<th>8th cohort</th>
<th>9th cohort</th>
<th>10th cohort</th>
</tr>
</thead>
</table>

http://www.caerleon.net/
Quiz: Who totally enjoys bashing up cohorts?

And the only cohort they were too gentlemanly to bash up?
Cohort: a simplistic view

Figure 1–13 Diagram of a hypothetical cohort of 1000 subjects. During the follow-up, four disease events (D) and seven losses to follow-up (arrows) occur, so that the number of subjects under observation at the end of the follow-up is 989.

A more sophisticated view: a “sea of person-time” in which all events occur.
Experimental designs
Simple, two-arm (parallel) RCT

FIGURE 10.1
In a randomized trial, the investigator (a) selects a sample from the population, (b) measures baseline variables, (c) randomizes the participants, (d) applies interventions (one should be a blinded placebo, if possible), (e) follows up the cohort, (f) measures outcome variables (blindly, if possible) and analyzes the results.
Cross-over RCT design

FIGURE 11.4

In the cross-over randomized trial, the investigator (a) selects a sample from the population, (b) measures baseline variables, (c) randomizes the participants, (d) applies interventions, (e) measures outcome variables, (f) allows washout period to reduce carryover effect, (g) applies intervention to former placebo group, (h) measures outcome variables again.
FIGURE 11.2
In a factorial randomized trial, the investigator (a) selects a sample from the population; (b) measures baseline variables; (c) randomly assigns two active interventions and their controls to four groups, as shown; (d) applies interventions; (e) follows up the cohorts; (f) measures outcome variables.
A Randomized, Controlled Trial of the Effects of Remote, Intercessory Prayer on Outcomes in Patients Admitted to the Coronary Care Unit

William S. Harris, PhD; Manohar Gowda, MD; Jerry W. Kolb, MDiv; Christopher P. Strychacz, PhD; James L. Vacek, MD; Philip G. Jones, MS; Alan Forker, MD; James H. O’Keefe, MD; Ben D. McCallister, MD

Context: Intercessory prayer (praying for others) has been a common response to sickness for millennia, but it has received little scientific attention. The positive findings of a previous controlled trial of intercessory prayer have yet to be replicated.

Objective: To determine whether remote, intercessory prayer for hospitalized, cardiac patients will reduce overall adverse events and length of stay.

Design: Randomized, controlled, double-blind, prospective, parallel-group trial.

Setting: Private, university-associated hospital.

Patients: Nine hundred ninety consecutive patients who were newly admitted to the coronary care unit (CCU).

Intervention: At the time of admission, patients were randomized to receive remote, intercessory prayer (prayer group) or not (usual care group). The first names of patients in the prayer group were given to a team of outside intercessors who prayed for them daily for 4 weeks. Patients were unaware that they were being prayed for, and the intercessors did not know and never met the patients.

Main Outcome Measures: The medical course from CCU admission to hospital discharge was summarized in a CCU course score derived from blinded, retrospective chart review.

Results: Compared with the usual care group (n = 524), the prayer group (n = 466) had lower mean ± SEM weighted (6.35 ± 0.26 vs 7.13 ± 0.27; P = .04) and unweighted (2.7 ± 0.1 vs 3.0 ± 0.1; P = .04) CCU course scores. Lengths of CCU and hospital stays were not different.

Conclusions: Remote, intercessory prayer was associated with lower CCU course scores. This result suggests that prayer may be an effective adjunct to standard medical care.

Arch Intern Med. 1999;159:2273-2278
Non-experimental (observational) designs
Cohort study

Figure 1–14 Basic analytical approach in a cohort study.
Cohort study

Figure 1–15 Same cohort study as in Figure 1–13, but the ascertainment of events and losses to follow-up is done separately among those exposed and unexposed.
Variants of cohort design

Figure 2: Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies

Pulmonary Function after Exposure to the World Trade Center Collapse in the New York City Fire Department

Gisela I. Banauch, Charles Hall, Michael Weiden, Hillel W. Cohen, Thomas K. Aldrich, Vasillios Christodoulou, Nicole Arcentales, Kerry J. Kelly, and David J. Prezant

Pulmonary Division, Department of Medicine, Montefiore Medical Center, and Biostatistics Division, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx; Bureau of Health Services, New York City Fire Department, Brooklyn; and Pulmonary Division, Department of Medicine, New York University School of Medicine, New York, New York

Rationale: On September 11, 2001, the World Trade Center collapse created an enormous urban disaster site with high levels of airborne pollutants. First responders, rescue and recovery workers, and residents have since reported respiratory symptoms and developed pulmonary function abnormalities.

Objectives: To quantify respiratory health effects of World Trade Center exposure in the New York City Fire Department.

Measurements: Longitudinal study of pulmonary function in 12,979 New York City Fire Department rescue workers employed on or before 09/11/2001. Between 01/01/1997 and 09/11/2002, 31,994 spirometries were obtained and the FEV₁ and FVC were analyzed for differences according to estimated World Trade Center exposure intensity. Adjusted average FEV₁ during the first year after 09/11/2001 was compared with the 5 yr before 09/11/2001. Median time between 09/11/2001 and a worker's first spirometry afterwards was 3 mo; 90% were assessed within 5 mo.

Main Results: World Trade Center-exposed workers experienced a substantial reduction in adjusted average FEV₁ during the year after 09/11/2001 (372 ml; 95% confidence interval, 364–381 ml; p < 0.001). This exposure-related FEV₁ decrement equaled 12 yr of aging-related FEV₁ decline. Moreover, exposure intensity assessed by initial arrival time at the World Trade Center site correlated linearly with FEV₁ reduction in an exposure intensity–response gradient (p = 0.048). Respiratory symptoms also predicted a further FEV₁ decrease (p < 0.001). Similar findings were observed for adjusted average FVC.

Conclusions: World Trade Center exposure produced a substantial reduction in pulmonary function in New York City Fire Department rescue workers during the first year after 09/11/2001.

service [EMS] workers) were present at the WTC site within the first week after 09/11/2001 and reported extensive exposures. Appropriate respiratory protection was initially not readily available; later, compliance was suboptimal (3). WTC exposure has since been implicated in “WTC cough,” and upper and lower airway inflammation with airway obstruction and bronchial hyperreactivity (4–12).

In a previous cross-sectional stratified random sample of 319 WTC-exposed FDNY rescue workers 3 wk after 09/11/2001, we described pulmonary function declines that correlated with WTC dust exposure intensity (3). To define better the respiratory consequences of WTC exposure, we now report our analysis of longitudinal pulmonary function course from 1997 to 2002 in the entire FDNY WTC medical screening cohort (n = 12,079).

Study objectives were to determine whether pulmonary function changed after 09/11/2001, and whether WTC exposure intensity affected pulmonary function and respiratory symptoms in an exposure intensity–response pattern after 09/11/2001. Some of the results of this study have previously been reported in the form of an abstract (13).

METHODS

The FDNY Bureau of Health Services performs periodic medical evaluations on all FDNY rescue workers approximately every 18 mo. Since 1997, these evaluations have included spirometry and a respiratory questionnaire. On 10/01/2001, the FDNY Bureau of Health Services started the FDNY WTC Medical Screening Program, which included
Case-control study

Figure 1-17 Basic analytical approach in a case-control study.
Case-control study

Schematic diagram of case-control study design

- Exposure: yes, Exposure: no
- Outcome
- Past or present
- Present
- Population with outcome (cases)
- Population without outcome (controls)
- Time

Grimes et al. Lancet 2002;359:431-34
Control sampling strategies

1) Cumulative sampling: from those who do not develop the outcome at the end of the study period (i.e. from the “survivors”)

2) Case-cohort (case-base; case-referent) sampling: from the entire cohort at baseline (start of the follow-up period)

3) Density sampling (risk-set sampling): throughout the course of the study, from individuals at risk (“risk-set”) at the time each case occurs

- Controls should be representative of the person-time distribution of exposure (exposure prevalence) in the study base (i.e. be representative of the study base)
- Controls should be selected independent of the exposure
Mobile phone use and risk of acoustic neuroma: results of the Interphone case–control study in five North European countries

MJ Schoemaker*,1, AJ Swerdlow1, A Ahlbom2,13, A Auvinen3,10, KG Blaasaas4, E Cardis5, H Collatz Christensen6, M Feychting2, SJ Hepworth7, C Johansen6, L Klæboe8, S Lönn2, PA McKinney7, K Muir9, J Raitanen10, T Salminen3, J Thomsen11 and T Tynes8,12

1Section of Epidemiology, Institute of Cancer Research, Brookes Lawley Building, Sutton SM2 5NG, UK; 2Institute of Environmental Medicine, Karolinska Institute, Box 210, 171 77, Stockholm, Sweden; 3STUK-Radiation and Nuclear Safety Authority, 00881 Helsinki, Finland; 4Norwegian Armed Forces, Bygning 0028A, Sessvollmoen 2058, Norway; 5International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Cedex 08, Lyon, France; 6Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark; 7Centre for Epidemiology and Biostatistics, University of Leeds, 30 Hyde Terrace, Leeds LS2 9LN, UK; 8The Cancer Registry of Norway, Institute of Population-based Cancer Research, Montebello, 0310 Oslo, Norway; 9Division of Epidemiology and Public Health, University of Nottingham, Nottingham NG7 2UH, UK; 10Tampere School of Public Health, University of Tampere, Tampere 33014, Finland; 11Department of Otolaryngology-Head and Neck Surgery, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark; 12Norwegian Radiation Protection Authority, PO Box 55, 1332 Osteras, Norway

There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case–control studies in four Nordic countries and the UK to assess the risk of acoustic neuroma in relation to mobile phone use. Data were collected by personal interview from 678 cases of acoustic neuroma and 3553 controls. The risk of acoustic neuroma in relation to regular mobile phone use in the pooled data set was not raised (odds ratio (OR) = 0.9, 95% confidence interval (CI): 0.7–1.1). There was no association of risk with duration of use, lifetime cumulative hours of use or number of calls, for phone use overall and for analogue or digital phones separately. Risk of a tumour on the same side of the head as reported phone use was raised for use for 10 years or longer (OR = 1.8, 95% CI: 1.1–3.1). The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out.

Published online 30 August 2005
© 2005 Cancer Research UK
Cross-sectional study

Figure 1-22 Schematic representation of a cross-sectional study, conceptually and methodologically analogous to the case-based case-control study represented in Figure 1-19, except that instead of explicitly selecting cases and controls, it selects a sample of the entire population. Broken diagonal lines with arrows represent losses to follow-up. Cases are represented by “D” boxes.
Respiratory Symptoms and Physiologic Assessment of Ironworkers at the World Trade Center Disaster Site*

Gwen Skloot, MD, FCCP; Michael Goldman, MD; David Fischler, MD; Christine Goldman, NP; Clyde Schechter, MA, MD; Stephen Levin, MD; and Alvin Teirstein, MD, FCCP

Study objectives: To characterize respiratory abnormalities in a convenience sample of ironworkers exposed at the World Trade Center (WTC) disaster site for varying lengths of time between September 11, 2001, and February 8, 2002.

Design: Cross-sectional study.

Setting: The Mount Sinai Medical Center, a large tertiary hospital.

Participants: Ninety-six ironworkers engaged in rescue and recovery with exposure onset between September 11, 2001, and September 15, 2001, who responded to an invitation to undergo respiratory evaluation.

Measurements: Medical and exposure history, physical examination, spirometry, forced oscillation (FO), and chest radiographs. The relationships of prevalence of respiratory symptoms and presence of obstructive physiology to smoking, exposure on September 11, duration of exposure, and type of respiratory protection were examined using univariate and linear and logistic regression analyses.

Results: Seventy-four of 96 workers (77%) had one or more respiratory symptoms (similar in smokers [49 of 63 subjects, 78%] and nonsmokers [25 of 33 subjects, 76%]). Cough was the most common symptom (62 of 96 subjects, 65%), and was associated with exposure on September 11. Chest examination and radiograph findings were abnormal in 10 subjects (10%) and 19 subjects (20%), respectively. FO revealed dysfunction in 34 of 64 subjects tested (53%), while spirometry suggested obstruction in only 11 subjects (17%). Lack of a respirator with canister was a risk factor for large airway dysfunction, and cigarette smoking was a risk factor for small airway dysfunction. No other relationships reached statistical significance.

Conclusions: Respiratory symptoms occurred in the majority of ironworkers at the WTC disaster site and were not attributable to smoking. Exposure on September 11 was associated with a greater prevalence of cough. Objective evidence of lung disease was less common. Spirometry underestimated the prevalence of lung function abnormalities in comparison to FO. Continuing evaluation of symptoms, chest radiographs, and airway dysfunction should determine whether long-term clinical sequelae will exist.

(CHEST 2004; 125:1248–1253)

Key words: exposure; forced oscillation; ironworkers; September 11, 2001; spirometry; World Trade Center disaster

Abbreviations: AX = area of low-frequency reactance; f-d R = frequency dependence of resistance; FEF25–75% = forced expiratory flow during 25% to 75% of FVC; FO = forced oscillation; IOS = Impulse Oscillation System; OR = odds ratio; R5 = respiratory resistance at 5 Hz; R5–R20 = respiratory resistance at 5 to 20 Hz; R20 = respiratory resistance at 20 Hz; WTC = World Trade Center
Ecologic Studies

- Explores correlations between aggregate (group level) exposure and outcomes
- Unit of analysis: not individual, but clusters (e.g. countries, counties, schools)
- Useful for generating hypothesis
- Prone to “ecological fallacy”
- Cannot adjust well for confounding due to lack of comparability (due to lack of data on all potential covariates)
Ecologic Studies: Correlation between TB and AIDS

Incidence of AIDS and TB for 13 states, 1989
(per 100,000 person-years)

Source: ActivEpi
Research

Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study
Yan Cui1, Zuo-Feng Zhang*1, John Froines2, Jinkou Zhao3, Hua Wang3, Shun-Zhang Yu4 and Roger Detels1

The Correlation and Association between Short-term Exposure to Ambient Air Pollution and Case Fatality of SARS in People's Republic of China.
Monday’s declaration by the National Bureau of Economic Research (NBER) that the US has been in a recession for more than a year is no surprise to buyers of Kraft Macaroni & Cheese, whose purchases jumped last winter. Sales of Kraft’s boxed mac-and-cheese rose to $193.1 million in the first quarter, 10 percent over the previous year, according to Information Resources Inc., a Chicago-based market-data company. They remained above 2007’s level in the second and third quarters as shoppers turned to cheaper options in a sagging economy.
Importance of the research question

“The question being asked determine the appropriate study architecture, strategy and tactics to be used - not tradition, authority, experts, paradigms or schools of thought.”

- Sackett, Wennberg 1997

- Good research starts with asking a clear, focused research question.
- How does one ask a focused research question?
How are these questions different?

- Does aspirin improve survival after myocardial infarction?

- In patients with first episode, acute myocardial infarction, does daily, low-dose, oral aspirin lead to higher survival rates as compared to placebo?
Types of questions (domains)

- Etiology [cohort, case-control]
- Therapy [RCT]
- Prognosis [cohort]
- Harm [cohort, case-control]
- Diagnosis [cross-sectional, case-control]
- Economic [cost-effectiveness analysis, etc.]

These domains are usually addressed by different study designs
Architecture of a focused question: a 4-part review question

P - Who is the patient or what problem is being addressed?

I/E - What is the intervention or exposure?

C – What is the comparison group?

O - What is the outcome or endpoint?

+ study design

Richardson et al. The well-built clinical question: a key to evidence-based decisions. ACP Journal Club 1995;A-12
Formulation of a therapy question

Is Zinc effective in treating cold?

In children with common cold, is oral Zinc effective in reducing the duration of symptoms, as compared to placebo?

+ RCTs
Formulation of an etiology question

Is alcohol a risk factor for dementia?

Are adults who drink regularly at a greater risk of developing dementia as compared to those who do not drink at all?

Comparison + cohort & case-control studies
How a focused question also helps in searching for studies

PICO + STUDY DESIGN FILTER

Patient or Problem

Intervention & comparison

Outcome

Study design filters

Studies most likely to address the question

ALL OF YOU MUST LEARN HOW TO SEARCH PUBMED!
Readings for this week and next

- Rothman text:
 - Chapter 3: Measuring disease occurrence and causal effects
 - Chapter 4: Types of epidemiologic study

- Gordis text:
 - Chapter 2: Dynamics of disease transmission
 - Chapter 3 & 4: Measuring the occurrence of disease

- For ‘extra credit’: Asterix the Legionary
THE SCIENTIFIC METHOD

Observe natural phenomena → Formulate Hypothesis → Test hypothesis via rigorous Experiment → Establish Theory based on repeated validation of results

THE ACTUAL METHOD

Make up Theory based on what Funding Agency Manager wants to be true → Design minimum experiments that will prove show? suggest Theory is true → Publish Paper: rename Theory a "Hypothesis" and pretend you used the Scientific Method → Defend Theory despite all evidence to the contrary