AN OVERVIEW OF MEASUREMENTS IN EPIDEMIOLOGY [VER 3, 2007]

Epidemiology is about identifying associations between exposures and outcomes. To identify any association, exposures and outcomes must first be measured in a quantitative manner. Then rates of occurrence of events are computed. These measures are called "measures of disease frequency." Once measured, the association between exposures and outcomes are then evaluated by calculating "measures of association or effect." Finally, the impact of removal of an exposure on the outcome is evaluated by computing "measures of potential impact." In general, measures of disease frequency are needed to generate measures of association, and both these are needed to get measures of impact. There is some overlap between these measures, and terminology is poorly standardized.

An Overview of Measurements in Epidemiology [Version 3, 2007]

FORMULAE USED TO COMPUTE THE MEASUREMENTS

The following formulae are based on this typical epi 2×2 table with standard notation:

Exposure	Yes No	Outcome (Disease)		$\mathrm{a}+\mathrm{b}$
		Yes	No	
		a	b	
		C	d	$\mathrm{c}+\mathrm{d}$

Other notation used:

I_{0}	= Incidence of outcome among the unexposed (baseline risk)
$\mathrm{I}_{\text {e }}$	= Incidence of outcome among the exposed
I_{t}	= Incidence of outcome in the total population (exposed and unexposed)
$\mathrm{P}_{\text {exp }}$	= Prevalence of exposure in the population
$\mathrm{P}_{\text {o }}$	= Prevalence of outcome among the unexposed
P_{e}	= Prevalence of outcome among the exposed
RR	= Relative Risk (could refer to a Risk Ratio or a Rate Ratio)
PR	= Prevalence Ratio
OR	= Odds Ratio
AR	= Attributable Risk
RD	= Risk Difference
PAR	= Population Attributable Risk
ARR	= Absolute Risk Reduction
RRR	= Relative Risk Reduction
NNH	= Number Needed to Harm
NNT	= Number Needed to Treat
CIR	= Cumulative Incidence Ratio
IDR	= Incidence Density Ratio
PF	= Prevented Fraction

WHEN EXPOSURES ARE HARMFUL:

${ }^{1}$ Risk Difference (ARR, AR)
$=a /(a+b)-c /(c+d) \quad=I_{e}-I_{o}$
${ }^{2}$ Number Needed to Harm (NNH)
${ }^{3}$ Risk Ratio (RR, CIR)
${ }^{4}$ Rate Ratio (RR, IDR) $\quad=\quad$ see end of this handout

This formula for Rate Ratio is based on the following 2×2 table format:

Exposed Unexposed

Cases (Outcome)	Person-time
a	N 1
b	N 2

WHEN EXPOSURES ARE PROTECTIVE:

In some situations (such as a clinical drug trial or a vaccine efficacy study), the exposure is protective. Therefore, incidence of disease in the exposed/intervention group (I_{e}) will usually be lower than incidence in the unexposed/control group (I_{o}). Hence, measures such as $R R$ and $O R$ will be <1.0 [i.e. protective effect].

In such situations, some of the above formulae will have to be computed and interpreted differently. Also, the names will change.

Absolute Risk Reduction (ARR) [ARR is the same as Risk Difference]	=	$c /(c+d)-\mathrm{a} /(\mathrm{a}+\mathrm{b})$	$=\mathrm{I}_{0}-\mathrm{I}_{\mathrm{e}}$
Number Needed to Treat (NNT)	=	$1 /$ ARR	
Relative Risk Reduction (RRR) (also called "prevented fraction")	=	$\frac{\mathrm{I}_{0}-\mathrm{I}_{\mathrm{e}}}{\mathrm{I}_{0}} * 100=$	$\frac{\mathrm{AR}}{\mathrm{I}_{0}} * 100$
	=	$\frac{c /(c+d)-a /(a+b)}{c /(c+d)}$	
Alternative formula for RRR	=	$1-\mathrm{RR} * 100$	
RRR in a case-control study	=	$1-\mathrm{OR} * 100$	
Vaccine Efficacy (VE)	=	Same formulae as	

