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Bias File 3. Emile Durkheim and the ecological fallacy

The story

Emile Durkheim (1858 —1917) was a famous French sociologist and pioneer in
the development of modern sociology and anthropology. In a groundbreaking
book published in 1897, entitled Le Suicide, Durkheim explored the differing
suicide rates among Protestants and Catholics. In 19th century Europe,
suicide rates were higher in countries that were more heavily Protestant.
Durkheim found that suicide rates were highest in provinces that were heavily
Protestant. He concluded that stronger social control among Catholics
resulted in lower suicide rates. However, Durkheim's study of suicide was
criticized as an example of the logical error termed the "ecological fallacy."

Indeed, it is one of the most famous examples of ecological fallacy. So, what
went wrong and why?

The study

Durkheim's study of religion and suicide used data from four groups of Prussian provinces between 1883
and 1890. The groups were formed by ranking 13 provinces according to the proportion (X) of the
population that was Protestant. Durkheim found that suicide rates (Y) were highest in provinces that
were heavily Protestant. He concluded that stronger social control among Catholics resulted in lower

suicide rates. According to Durkheim, Catholic society had normal levels of 'integration' while Protestant
society has low levels.

Using ordinary least-squares linear regression on Durkheim's data, Morgenstern (1995) found a strong
positive correlation (Figure below, from Morgenstern 1995) between proportion protestant and suicide
rates. The estimated rate ratio, comparing Protestants with other religions, was 7.6 (i.e. suicide rates
among protestants was about 8 fold higher than other religions).
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Figure 2 Suicide rate (Y, per lOslycar) by proportion Protestant (X) for four groups of Prussian
provinces, 1883-90. The four observed points (X, ¥) are (0.30, 9.56), (0.45, 16.36), (0.785, 22.00),
and (0.95, 26.46). the fitted line is based on unweighted least-squares regression [Source: Adapted
from Durkheim (16)].



The bias

Ecological fallacy is a well recognized concept in sociology (Robinson 1950). A good description of the
ecological fallacy in Durkheim's work is provided by Morgenstern (1995 & 2008). According to
Morgenstern, the estimated rate ratio of 7.6 was probably not because suicide rates were nearly 8 fold
higher in Protestants than in non-Protestants. Rather, because none of the regions was entirely
Protestant or non-Protestant, it may have been non-Protestants (primarily Catholics) who were
committing suicide in predominantly Protestant provinces. It is plausible that members of a religious
minority might have been more likely to commit suicide than were members of the majority. Living in a
predominantly Protestant area had a contextual effect on suicide risk among Catholics.

Interestingly, Morgenstern points out that Durkheim compared the suicide rates at the individual level
for Protestants, Catholics and Jews living in Prussia, and from his data, the rate was about twice as great
in Protestants as in other religious groups. Thus, when the rate ratios are compared (2 vs 8), there
appears to be substantial ecological bias using the aggregate level data.

There are more striking examples. One compelling example by Robinson (1950), was the relationship
between nativity (foreign vs native born) and literacy. For each of the 48 states in the USA of 1930,
Robinson computed two numbers: the percent of the population who were foreign-born (i.e.
immigrants), and the percent who were literate. He found the correlation between the 48 pairs of
numbers was .53. This ecological correlation suggested a positive association between foreign birth and
literacy: the foreign-born (immigrants) are more likely to be literate than the native-born. In reality, the
association was negative: the correlation computed at the individual level was -0.11 (immigrants were
less literate than native citizens). The ecological correlation gave the incorrect inference. This is because
the foreign-born (immigrants) tended to migrate to and settle in states where the native-born are
relatively literate. In this example by Robinson, the correlation is totally reversed.

Ecological fallacy arises from thinking that relationships observed for groups necessarily

hold for individuals: if provinces with more Protestants tend to have higher suicide rates, then
Protestants must be more likely to commit suicide; if countries with more fat in the diet have higher
rates of breast cancer, then women who eat fatty foods must be more likely to get breast cancer. Such
inferences made using group-level data may not always be correct at the individual level.

Ecological bias can be interpreted as the failure of associations seen at one level of grouping to
correspond to effect measures at the grouping level of interest. For example, associations seen using
country-level data may not correlate with
ate associations that exist at the individual or
% o neighborhood-level. The Figure (from Koepsell and
o : "i’.-_ Weiss 2003) illustrates this nicely. Within each of
'.h the four populations, as exposure increases,
o, Y. outcome decreases. But across populations, as the
mean exposure level increases, the mean rate of
outcome increases.
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Source: Epidemiologic Methods. Thomas Koepsell & Noel
Weiss. Oxford Univ Press, 2003
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The lesson

As emphasized by Morgenstern (1995 & 2008), several practical advantages make ecologic studies
especially appealing for undertaking various types of epidemiologic research. Despite these advantages,
ecologic analysis poses problems of interpretation when making inferences at the individual level. The
correlation at the group level was valid in both Durkheim and Robinson examples. It was only invalid as
a statement of individual causal effect. As pointed out by Greenland (2001), if we have predictors at the
individual and the group level, and we want the causal effects at one or the other level, then our
ecological level analysis could be confounded by omitted variables at the individual level.
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ABSTRACT

An ecologic study focuses on the comparison of groups, rather than individuals;
thus, individual-level data are missing on the joint distribution of variables
within groups. Variables in an ecologic analysis may be aggregate measures,
environmental measures, or global measures. The purpose of an ecologic
analysis may be to make biologic inferences about effects on individual risks
or to make ecologic inferences about effects on group rates. Ecologic study
designs may be classified on two dimensions: (a) whether the primary group
is measured (exploratory vs analytic study); and (b) whether subjects are
grouped by place (multiple-group study), by time (time-trend study), or by
place and time (mixed study). Despite several practical advantages of ecologic
studies, there are many methodologic problems that severely limit causal
inference, including ecologic and cross-level bias, problems of confounder
control, within-group misclassification, lack of adequate data, temporal ambi-
guity, collinearity, and migration across groups.

INTRODUCTION

An ecologic or aggregate study focuses on the comparison of groups, rather
than individuals. The underlying reason for this focus is that individual-level
data are missing on the joint distribution of at least two and perhaps all
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variables within each group; in this sense, an ecologic study is an incomplete
design (35). Ecologic studies have been conducted by social scientists for more
than a century (14a) and have been used extensively by epidemiologists in
many research areas. Nevertheless, the distinction between individual-level
and group-level (ecologic) studies and the inferential implications are far more
complicated and subtle than they first appear. Before 1980, ecologic studies
were usually presented in the first part of epidemiology textbooks as simple
descriptive analyses in which disease rates are stratified by place and/or time
to generate or test hypotheses; little attention was given to statistical methods
or inference (e.g. 41). The purpose of this review is to provide a methodologic
overview of ecologic studies that emphasizes study design and causal infer-
ence. Although ecologic studies are easily and inexpensively conducted, the
results are often difficult to interpret.

CONCEPTS AND RATIONALE

Before discussing the design and interpretation of ecologic studies, we must
first define the concepts of ecologic measurement, analysis, and inference.

Levels of Measurement

The sources of data used in epidemiologic studies typically involve direct
observations of individuals (e.g. age and sex), sometimes subindividual parts
(e.g. intraocular pressure of each eye), and occasionally groups or regions (e.g.
air pollution and social disorganization). These direct observations are then
organized to measure specific variables in the study population: Individual-
level variables are properties of individuals, and ecologic variables are prop-
erties of groups. To be more specific, ecologic measures may be classified into
three types:

1. Aggregate measures are summaries (e.g. means or proportions) of observa-
tions derived from individuals in each group (e.g. the proportion of smokers
or median family income).

2. Environmental measures are physical characteristics of the place in which
members of each group live or work (e.g. air-pollution level or hours of
sunlight). Note that each environmental measure has an analogue at the
individual level, and these individual exposures, or doses, usually vary
among members of each group, though they may remain unmeasured.

3. Global measures are attributes of groups or places for which there is no
distinct analogue at the individual level, unlike aggregate and environmen-
tal measures (e.g. population density, level of social disorganization, or the
existence of a specific law).
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Levels of Analysis

The unit of analysis is the common level for which the data on all variables
are reduced and analyzed. In an individual-level analysis, a value for each
variable is assigned to every subject in the study. It is possible, even common
in environmental epidemiology, for one or more variables to be ecologic
measures. For example, the average pollution level of each county might be
assigned to every resident of that county.

In a completely ecologic analysis, all variables (exposure, disease, and
covariates) are ecologic measures, so the unit of analysis is the group (e.g.
region, worksite, school, demographic stratum, or time interval). Thus, within
each group, we do not know the joint distribution of any combination of
variables at the individual level (e.g. the frequencies of exposed cases, unex-
posed cases, exposed noncases, and unexposed noncases); all we know is the
marginal distribution of each variable (e.g. the proportion exposed and the
disease rate—the T frequencies in Figure 1).

In a partially ecologic analysis of three or more variables, we have additional
information on certain joint distributions (the M and/or N frequencies in Figure
1 and/or rarely the L frequencies); but we still do not know the full joint
distribution of all variables within each group (i.e. the ? cells in Figure 1 are
missing). For example, in an ecologic study of cancer incidence by county,
the joint distribution of age (a covariate) and disease status within each county
(the M frequencies in Figure 1) might be obtained from the census and a
population tumor registry.

Multilevel analysis is a special type of modeling technique that combines
analyses conducted at two or more levels (6, 71, 72). For example, an indi-
vidual-level analysis might be conducted in each group, followed by an eco-
logic analysis of all groups using the results from the individual-level analyses.
This approach is described in a later section.
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Figure 1 Joint distribution of exposure status (E vs E), disease status (D vs D), and covariate status
(C vs C) in each group of a simple ecologic analysis: T frequencies are the only data available in a
completely ecologic analysis of all three variables; M frequencies require additional data on the joint
distribution of C and D within each group; N frequencies require additional data on the joint
distribution of E and C within each group; L frequencies require additional data on the joint
distribution of E and D within each group (rarely available); and ? cells are missing in an ecologic
analysis.
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Levels of Inference

The underlying goal of a given epidemiologic study or analysis may be to
make biologic (or biobehavioral) inferences about effects on individual risks
or to make ecologic inferences about effects on group rates (45). The target
level of causal inference, however, does not always match the level of analysis.
For example, the purpose of an ecologic analysis may be to make a biologic
inference about the effect of a specific exposure on disease risk. As we see
later in this review, such cross-level inferences are particularly vulnerable to
bias.

If the objective of a study is to estimate the biologic effect of wearing a
motorcycle helmet on the risk of motorcycle-related mortality among motor-
cycle riders, the target level of causal inference is biologic. On the other hand,
if the objective is to estimate the ecologic effect of helmet-use laws on the
motorcycle-related mortality rate of riders in different states, the target level
of causal inference is ecologic. Note that the magnitude of this ecologic effect
depends not only on the biologic effect of helmet use but also on the degree
and pattern of compliance with the law in each state. Furthermore, the validity
of the ecologic-effect estimate depends on our ability to control for differences
among states in the jointdistribution of confounders, including individual-level
variables such as age and amount of motorcycle riding.

We might also be interested in estimating the contextual effect of an ecologic
exposure on individual risk, which is also a form of biologic inference (5, 64).
If the ecologic exposure is an aggregate measure, we would generally want to
separate its effect from the effect of its individual-level analogue. For example,
we might estimate the contextual effect of living in a poor area on the risk of
disease, controlling for individual poverty level (33). Similarly, in evaluating
motorcycle-helmet laws in the U.S., we might want to estimate the contextual
effect of living in a state that mandates helmet use on the risk of motorcycle-
related mortality in riders, controlling for individual helmet use. Contextual
effects are also relevant in infectious-disease epidemiology, where the risk of
disease depends on the prevalence of the disease in others with whom the
individual has contact (37, 65).

Rationale for Ecologic Studies

There are several reasons for the widespread use of ecologic studies in epide-
miology, despite frequent cautions about their methodologic limitations:

1. Low cost and convenience Ecologic studies are inexpensive and take little
time because various secondary data sources, each involving different
information needed for the analysis, can easily be linked at the aggregate
level. For example, data obtained from population registries, vital records,
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large surveys, and the census are often linked at the state, county, or
census-tract level.

2. Measurement limitations of individual-level studies In environmental ep-

idemiology and other research areas, we often cannot accurately measure
relevant exposures or doses at the individual level for large numbers of
subjects—at least not with available time and resources. Thus, the only
practical way to measure the exposure may be ecologically (45, 46). This
advantage is especially true when investigating apparent clusters of disease
in small areas (66). Sometimes individual-level exposures, such as dietary
factors, cannot be measured accurately because of substantial within-person
variability; yet ecologic measures might accurately reflect group averages
(31).

3. Design limitations of individual-level studies Individual-level studies may
not be practical for estimating exposure effects if the exposure varies little
within the study area. However, ecologic studies covering a much wider
area might be able to achieve substantial variation in mean exposure across
groups (e.g. 50).

4. Interest in ecologic effects As noted above, the stated purpose of a study
may be to assess an ecologic effect, i.e. the target level of inference may
be ecologic rather than biologic. Ecologic effects are particularly relevant
when evaluating the impacts of population interventions such as new pro-
grams, policies, or legislation.

S. Simplicity of analysis and presentation In large, complex studies con-
ducted at the individual level, it may be conceptually and statistically
simpler to perform ecologic analyses and to present ecologic results than
to do individual-level analyses. For example, data from large, periodic
surveys, such as the National Health Interview Survey, are often analyzed
ecologically by treating some combination of year, region, and demo-
graphic group as the unit of analysis.

STUDY DESIGNS

In an ecologic study design, the planned unit of analysis is the group. Ecologic
designs may be classified on two dimensions: the method of exposure mea-
surement and the method of grouping (35, 45). Regarding the first dimension,
an ecologic design is called exploratory if the primary exposure of potential
interest is not measured, and analytic if the primary exposure variable is
measured and included in the analysis. In practice, this dimension is a contin-
uum, since most ecologic studies are not conducted to test a single hypothesis.
Regarding the second dimension, the groups of an ecologic study may be
identified by place (multiple-group design), by time (time-trend design), or by
a combination of place and time (mixed design).
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Multiple-Group Study

EXPLORATORY In this type of exploratory study, we compare the rate of
disease among many regions during the same period. The purpose is to search
for spatial patterns that might suggest an environmental etiology or more
specific etiologic hypotheses. For example, the National Cancer Institute (NCI)
mapped the age-adjusted cancer mortality rates in the U.S. by county for the
period 1950-69 (42). For oral cancers, they found a striking difference in
geographic patterns by-sex: Among men, the mortality rates were greatest in
the urban Northeast, but among women, the rates were greatest in the South-
east. These findings led to the hypothesis that snuff dipping, which is common
among rural southern women, is a risk factor for oral cancers (2). The results
of a subsequent case-control study supported this hypothesis (70).

Exploratory ecologic studies may also involve the comparison of rates
between migrants and their offspring and residents of their countries of emi-
gration and immigration (31, 41). If the rates differ appreciably between the
countries of emigration and immigration, migrant studies often yield results
suggesting the influence of certain types of risk factors for the disease under
study. For example, if US immigrants from Japan have rates of a disease similar
to US whites but much lower than Japanese residents, the difference may be
due to environmental or behavioral risk factors operating during adulthood.
However, the interpretation of results from these studies is often limited by
differences between countries in the classification and detection of disease or
cause of death.

In mapping studies, such as the NCI investigation, a simple comparison of
rates across regions is often complicated by two statistical problems. First,
regions with smaller numbers of observed cases show greater variability in the
estimated rate; thus the most extremerates tend to be observed for those regions
with the fewest cases. Second, nearby regions tend to have more similar rates
than do distant regions (i.e. autocorrelation) because unmeasured risk factors
tend to cluster in space. Statistical methods for dealing with both problems
have been developed by fitting the data to an autoregressive spatial model and
using empirical Bayes techniques to estimate the smoothed rate for each region
(9, 44, 47). The degree of spatial autocorrelation or clustering can be measured
to reflect environmental effects on the rate of disease (68, 69). The empirical
Bayes approach can also be applied to data from analytic multiple-group
studies (described below) by including covariates in the model (e.g. 8, 12).

ANALYTIC In this type of study, we assess the ecologic association between
the average exposure level or prevalence and the rate of disease among many
groups. This is the most common ecologic design; typically, the unit of analysis
is a geopolitical region. For example, Hatch & Susser (29) examined the
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association between background gamma radiation and the incidence of child-
hood cancers between 1975 and 1985 in the region surrounding a nuclear
power plant. Average radiation levels for each of 69 tracts in the region were
estimated from a 1976 aerial survey. The authors found positive associations
between radiation level and the incidence of leukemia (an expected finding)
as well as solid tumors (an unexpected finding).

Data analysis in this type of multiple-group study usually involves fitting
the data to a mathematical model. For example, Prentice & Sheppard (51)
proposed a linear relative rate model using iteratively reweighted least-squares
procedures to estimate the model parameters. Prentice & Thomas (52) also
considered an exponential relative rate model, which, they argue, may be more
parsimonious than the linear-form model for specifying covariates. These
methods can be applied to data aggregated by place and/or time (to be discussed
below). Use of ecologic modeling to estimate exposure effects is described in
the next section.

Time-Trend Study

EXPLORATORY An exploratory time-trend or time-series study involves a
comparison of the disease rates over time in one geographically defined pop-
ulation. In addition to providing graphical displays of temporal trends, time-
series data can also be used to forecast future rates and trends. This latter
application, which is more common in the social sciences than in epidemiol-
ogy, usually involves fitting the outcome data to autoregressive integrated
moving average (ARIMA) models (30, 48). The method of ARIMA modeling
can also be extended to evaluate the impact of a population intervention (43),
to estimate associations betweens two or more time-series variables (7, 48),
and to estimate associations in a mixed ecologic design (60; see below).

A special type of exploratory time-trend analysis often used by epidemiol-
ogists is age-period-cohort (or cohort) analysis. Through graphical displays or
formal modeling techniques, the objective of this approach is to estimate the
separate effects of three time-dependent variables on the rate of disease: age,
period (calendar time), and birth cohort (year of birth) (32, 35). Because of
the linear dependency of these three variables, there is an inherent statistical
limitation (identification problem) with the interpretation of age-period-cohort
results. The problem is that each data set has alternative explanations with
respect to the combination of age, period, and cohort effects; there is no unique
set of effect parameters when all three variables are considered simultaneously.
The only way to decide which interpretation should be accepted is to consider
the findings in light of prior knowledge and, possibly, to constrain the model
by ignoring one effect.

Lee et al (40) conducted an age-period-cohort analysis of melanoma mor-
tality among white males in the U.S. between 1951 and 1975. They concluded
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that the apparent increase in the melanoma mortality rate was due primarily
to a cohort effect. That is, persons born in more recent years experienced
throughout their lives a higher rate than did persons born earlier. In a subse-
quent paper, Lee (39) speculated that this cohort effect might reflect increases
in sunlight exposure or sunbuming during youth.

ANALYTIC In this type of time-trend study, we assess the ecologic association
between change in average exposure level or prevalence and change in disease
rate in one geographically defined population. As with exploratory designs,
this type of assessment can be done by simple graphical displays or by time-
series regression modeling (e.g. 48). With either approach, however, the in-
terpretation of findings is often complicated by two problems. First, changes
in disease classification and diagnostic criteria can produce very misleading
results. Second, the latency of the disease with respect to the primary exposure
may be long, variable across cases, or simply unknown. Thus, employing an
arbitrary lag between observations—or an empirically defined lag that maxi-
mizes the estimated association between the two trends—cCan also produce
misleading results (28).

Darby & Doll (13) examined the associations between average annual ab-
sorbed dose of radiation fallout from weapons testing and the incidence rate
of childhood leukemia in three European countries between 1945 and 198S.
Although the leukemia rate varied over time in each country, they found no
convincing evidence that these changes were attributable to changes in fallout
radiation.

Mixed Study

EXPLORATORY The mixed ecologic design combines the basic features of the
multiple-group study and the time-trend study. Time-series (ARIMA) model-
ing or age-period-cohort analysis can be used to describe or predict trends in
the disease rate for multiple populations. For example, to test Lee’s (39)
hypothesis that changes in sunlight exposure during youth can explain the
observed increase in melanoma mortality in the U.S., we might conduct an
age-period-cohort analysis, stratifying on region according to approximate
sunlight exposure (without measuring the exposure). Assuming the amount of
sunlight in the regions has not changed differentially over the study period,
we might expect the cohort effect described above to be stronger for sunnier
regions.

ANALYTIC In this type of mixed ecologic design, we assess the association
between change in average exposure level or prevalence and change in disease
rate among many groups. Thus the interpretation of estimated effects is en-
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hanced because two types of comparisons are made simultaneously: change
over time within groups and differences among groups. For example, Crawford
et al (11) evaluated the hypothesis that hard drinking water (i.e. water with a
high concentration of calcium and magnesium) is a protective risk factor for
cardiovascular disease (CVD) mortality. They compared the absolute change
in CVD mortality rate between 1948 and 1964 in 83 British towns, by water-
hardness change, age, and sex. In all sex-age groups, especially for men, the
authors found an inverse association between water-hardness change and CVD
mortality. In middle-aged men, for example, the increase in CVD mortality
was less in towns that made their water harder than in towns that made their
water softer.

EFFECT ESTIMATION

A major quantitative objective of most epidemiologic studies is to estimate
the effect of one or more exposures on disease occurrence in a well-defined
population at risk. A measure of effect in this context is not just any measure
of association, such as a correlation coefficient; rather, it reflects a particular
causal parameter, i.e. a counterfactual contrast in disease occurrence (21, 24,
27, 46, 58). In studies conducted at the individual level, effects are usually
estimated by comparing the rate or risk of disease, in the form of a ratio or
difference, for exposed and unexposed populations. In multiple-groupecologic
studies, however, we cannot estimate effects directly in this way because of
the missing information on the joint distribution within groups. Instead, we
regress the group-specific disease rates (¥) on the group-specific exposure
prevalences (X). For example, fitting the data to a linear model produces the
following prediction equation: Q= By + B,X, where By and B, are the esti-
mated intercept and slope, using ordinary least-squares methods. The estimated
biologic effect of the exposure (at the individual level) can be derived from
the regression results (1, 19). The predicted disease rate (?) in a group that is
entirely exposed is By + B(1) = By + By, and the predicted rate in a group
that is entirely unexposed is By + B;(0) = B,. Therefore, the estimated rate
difference is B, and the estimated rateratiois 1 + B;/B,. Note that this ecologic
method of effect estimation requires rate predictions be extrapolated to both
extreme values of the exposure variable (i.e. X = 0 and 1), which are likely to
lie well beyond the observed range of the data. It is not surprising, therefore,
that different model forms (e.g. log-linear vs linear) can lead to very different
estimates of effect (22). Fitting a linear model, in fact, may lead to negative,
and thus meaningless, estimates of the rate ratio.

As an illustration of rate-ratio estimation in an ecologic study, consider
Durkheim’s (16) examination of religion and suicide in four groups of Prussian
provinces between 1883 and 1890 (see Figure 2). The groups were formed by
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Figure 2 Suicide rate (Y, per 105/year) by proportion Protestant (X) for four groups of Prussian
provinces, 1883-90. The four observed points (X, ¥) are (0.30, 9.56), (0.45, 16.36), (0.785, 22.00),
and (0.95, 26.46); the fitted line is based on unweighted least-squares regression [Source: Adapted
from Durkheim (16)].

ranking 13 provinces according to the proportion (X) of the population that
was Protestant. Using ordinary least-squares linear regression, we estimate the
suicide rate (?, per 10%/year) in each group to be 3.66 + 24.0(X). Therefore,
the estimated rate ratio, comparing Protestants with other religions, is 1 +
(24.0/3.66) = 7.6. Note in Figure 2 that the fit of the linear model is excellent
(R2=0.97).

There are two methods used to control for confounders in multiple-group
ecologic analyses. The first is to treat ecologic measures of the confounders
as covariates (Z) in the model, e.g. percent male and percent white in each
group. If the individual-level effects of the exposure and covariates are additive
(i.e. if the disease rates follow a linear model), then the ecologic regression of
Y on X and Z will also be linear with the same coefficients (22, 38). That is,
the estimated coefficient for the exposure variable can be interpreted as the
rate difference adjusted for other covariates, analogously to the crude estimate
discussed above.

The second method used to control for confounders in ecologic analyses is
rate standardization for these confounders (57), followed by regression of the
standardized rates as the outcome variable. Note that this method requires
additional data on the joint distribution of the covariate and disease within
each group (i.e. the M frequencies in Figure 1). Nevertheless, it cannot be
expected to reduce bias unless all predictors in the model (X and Z) are
mutually standardized for the same confounders (22, 25, 56). Standardization
of the exposure prevalences, for example, requires data on the joint distribution
of the covariate and exposure within groups (i.e. the N frequencies in Figure
1); however, this information is not often available in ecologic studies.
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As in individual-level analyses, product terms (e.g. XZ) are often used in
ecologic analyses to model interaction effects, i.e. to assess effect modifica-
tion. In ecologic analyses, however, the product of X and Z (both group
averages) is not, in general, equal to the average product of the exposure (x)
and covariate (2) at the individual level within groups. Assuming a linear
model, XZ will be equal to the mean xz in each group only if x and z are
uncorrelated within groups (22). Thus, as pointed out in the next section,
interaction (nonadditive) effects at the individual level complicate the inter-
pretation of ecologic results.

METHODOLOGIC PROBLEMS

Despite the many practical advantages of ecologic studies mentioned pre-
viously, there are several methodologic problems that may severely limit causal
inference, especially biologic inference.

Ecologic Bias

The major limitation of ecologic analysis for making causal inferences is
ecologic bias, which is the failure of expected ecologic effect estimates to
reflect the biologic effect at the individual level (18, 19, 25, 45, 54). In addition
to the usual sources of bias that threaten individual-level analyses (35, 57), the
underlying problem of ecologic analyses for estimating biologic effects is
heterogeneity of exposure level and/or covariate levels within groups; as noted
earlier, this heterogeneity is not fully captured with ecologic data because of
missing information on joint distributions (see Figure 1). Robinson (55) was
the first to describe mathematically how ecologic associations could differ
from the corresponding associations at the individual level within groups of
the same population. He expressed this relationship in terms of correlation
coefficients; this relationship was later extended by Duncan et al (15) to
regression coefficients in a linear model. The phenomenon became widely
known as the ecologic(al) fallacy (61), and the magnitude of the ecologic bias
may be severe in practice (10, 17, 54, 62, 63).

As an illustration of ecologic bias, consider again Durkheim’s data on
religion and suicide (Figure 2). The estimated rate ratio of 7.6 in the ecologic
analysis may not mean that the suicide rate was nearly eight times greater in
Protestants than in non-Protestants. Rather, since none of the regions were
entirely Protestant or non-Protestant, it may have been non-Protestants (pri-
marily Catholics) who were committing suicide in predominantly Protestant
provinces. It is certainly plausible that members of a religious minority might
have been more likely to take their own lives than were members of the
majority. The implication of this alternative explanation is that living in a
predominantly Protestant area has a contextual effect on suicide risk among
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non-Protestants, i.e. there is an interaction effect at the individual level between
religion and religious composition of one’s area of residence.

Interestingly, Durkheim (16) compared the suicide rates (at the individual
level) for Protestants, Catholics, and Jews living in Prussia. From his data, we
find that the rate was about twice as high in Protestants as in other religious
groups. Thus, there appears to be substantial ecologic bias (i.e. comparing
rate-ratio estimates of about 2 vs 8). Durkheim, however, failed to notice this
quantitative difference because he did not actually estimate the magnitude of
the effect in either analysis.

Greenland & Morgenstern (25) showed that ecologic bias can arise from
three sources when using simple linear regression to estimate the crude expo-
sure effect: The first may operate in any type of study; the latter two are unique
to ecologic studies (i.e. cross-level bias), but are defined in terms of individ-
ual-level associations.

1. Within-group bias The exposure effect within groups may be biased by
confounding, selection methods, or misclassification (35, 57). Thus, for
example, if there is positive net bias in every group, we would expect the
ecologic estimate to be biased as well.

2. Confounding by group Ecologic bias may result if the background rate of
disease in the unexposed population varies across groups, specifically if
there is a nonzero ecologic (linear) correlation between mean exposure
level and the background rate.

3. Effect modification by group Ecologic bias may also result if the rate
difference for the exposure effect at the individual level varies across
groups.

Confounding and effect modification by group (the sources of cross-level
bias) can arise in three ways: (a) Extraneous risk factors (confounders or
modifiers) are differentially distributed across groups; (b) the ecologic expo-
sure variable has an effect on risk separate from the effect of its corresponding
individual-level analogue, e.g. living in a predominantly Protestant area vs
being Protestant (in the suicide example); or (c) disease risk depends on the
prevalence of that disease in other members of the group, which is true of
many infectious diseases (37).

Unfortunatelif, those conditions that produce ecologic bias cannot be ob-
served in ecologic data. Furthermore, the fit of the ecologic regression model,
in general, gives no indication of the presence, direction, or magnitude of
ecologic bias. Thus, a model with excellent fit may yield substantial bias (e.g.
Figure 2), and one model with a better fit than another model may yield more
bias.

A potential strategy for reducing ecologic bias is to use smaller units in an
ecologic study (e.g. counties instead of states) in order to make the groups
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more homogeneous with respect to the exposure. On the other hand, this
strategy might not be feasible because of the lack of available data aggregated
at the same level, and it might lead to two other problems: greater migration
between groups (see below) and less precise estimation of disease rates (45,
67).

Problems of Confounder Control

As already indicated, covariates are included in ecologic analyses to control
for confounding, but the conditions for a covariate being a confounder are
different at the ecologic and individual levels (25, 26). At the individual level,
a risk factor must be associated with the exposure to be a confounder. In a
multiple-group ecologic study, in contrast, a risk factor may produce ecologic
bias (i.e. it may be an ecologic confounder) even if it is unassociated with the
exposure in every group, especially if the risk factor is ecologically associated
with the exposure across groups (22, 25). Conversely, a risk factor that is a
confounder within groups may not produce ecologic bias if it is ecologically
unassociated with the exposure across groups.

Control for confounders is more problematic in ecologic analyses than in
individual-level analyses (22, 25, 26). Even when all variables are accurately
measured for all groups, adjustment for extraneous risk factors may not reduce
the ecologic bias produced by these risk factors. In fact, it is possible for such
ecologic adjustment to increase bias. It follows from the principles presented
in the previous section (25) that there will be no ecologic bias in a multiple-
linear-regression analysis if the following conditions are met:

1. There is no residual within-group bias in exposure effect in any group
because of confounding by unmeasured risk factors, selection methods, or
misclassification.

2. There is no ecologic correlation between the mean value of each predictor
and the background rate of disease in the joint reference (unexposed) level
of all predictors.

3. The rate difference for each predictor is uniform across levels of the other
predictors within groups (i.e. the effects are additive), and each rate differ-
ence is uniform across groups (i.e. group does not modify the effect of each
predictor at the individual level).

These conditions are sufficient, but not necessary, for the ecologic estimate
to be unbiased, i.e. there might be little or no bias even if none of these
conditions are met. On the other hand, minor deviations from these conditions
can produce substantial ecologic bias (22). Since the sufficient conditions for
no ecologic bias cannot be checked with ecologic data alone, the unpredictable
and potentially severe nature of such bias makes biologic inference from
ecologic analyses particularly problematic. Prentice & Sheppard (51) have
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suggested that ecologic data be supplemented with individual-level data from
each group (or a representative sample) to enhance biologic inference.

Lack of additivity at the individual level (see #3 above) is common in
epidemiology, but unmeasured modifiers do not bias results at the individual
level if they are unrelated to the exposure (21). Furthermore, interactions may
be handled readily at the individual level by including product terms as pre-
dictors in the model (e.g. xz). In ecologic analyses, however, lack of additivity
within groups is a source of ecologic bias, and this bias cannot be eliminated
or reduced by the inclusion of product terms (e.g. XZ) unless the effects are
exactly multiplicative and the two variables are uncorrelated within groups
(53).

Another source of ecologic bias is misspecification of confounders (26).
Although this problem can also arise in individual-level analyses, it is more
difficult to avoid in ecologic analyses because the relevant confounder may
be the distribution of covariate histories for all individuals within each group.
In ecologic studies, therefore, adjustment for covariates derived from available
data (e.g. proportion of current smokers) may be inadequate to control con-
founding. It is preferable, whenever possible, to control for more than a single
summary measure of the covariate distribution (e.g. the proportions of the
group in each of several smoking categories). In addition, since it is usually
necessary to control for several confounders (among which the effects may
not be linear and additive), the best approach for reducing ecologic bias is to
include covariates for categories of their joint distribution within regions. For
example, to control ecologically for race and sex, the investigator might adjust
for the proportions of white women, nonwhite men, and nonwhite women
(treating white men as the referent), rather than the conventional approach of
adjusting for the proportions of men (or women) and whites (or nonwhites).

Within-Group Misclassification

The principles of misclassification bias with which epidemiologists are familiar
when interpreting the results of analyses conducted at the individual level do
not apply to ecologic analyses. At the individual level, for example, non-
differential misclassification of exposure nearly always leads to bias toward
the null. In multiple-group ecologic studies, however, this principle does not
hold when the exposure variable is an aggregate measure. Brenner et al (4)
have shown that nondifferential misclassification of a binary exposure within
groups usually leads to bias away from the null and that the bias may be severe.
Greenland & Brenner (23) have provided a simple method to correct for
nondifferential misclassification of exposure or disease in ecologic analyses,
based on estimates of sensitivity and specificity.

In studies conducted at the individual level, misclassification of a covariate,
if nondifferential with respect to both exposure and disease, will usually reduce
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our ability to control for that confounder (20, 59). That is, adjustment will not
completely eliminate the bias due to the confounder. In ecologic studies,
however, nondifferential misclassification of a binary confounder within
groups does not affect our ability to control for that confounder, provided there
is no cross-level bias (3).

If all but one variable (e.g. the exposure or a covariate) in a given analysis
is measured at the individual level, this partially ecologic analysis may also
be regarded as nonecologic with the ecologic variable misclassified. Thus, the
resulting bias may be understood in terms of misclassification bias operating
at the individual level.

Other Problems

LACK OF ADEQUATE DATA Certain types of data, such as medical histories,
may not be available in aggregate form; or available data may be too crude,
incomplete, or unreliable, such as sales data for measuring behaviors (45, 67).
In addition, secondary sources of data from different administrative areas or
from different periods may not be comparable. For example, disease rates may
vary across countries because of differences in disease classification or case
detection. Furthermore, since many ecologic analyses are based on mortality
rather than incidence data, causal inference is further limited (35).

TEMPORAL AMBIGUITY In a well-designed cohort study of disease incidence,
we can usually be confident that disease occurrence did not precede the
exposure. In ecologic studies, however, use of incidence data provides no such
assurance against this temporal ambiguity (45). The problem is most trouble-
some when the disease can influence exposure status in individuals or when
the disease rate can influence the mean exposure in groups (through the impact
of population interventions designed to change exposure levels in areas with
high disease rates).

The problem of temporal ambiguity in ecologic studies (especially time-
trend studies) is further complicated by an unknown or variable latent period
between exposure and disease occurrence (28, 67). The investigator can only
attempt to deal with this problem in the analysis by examining associations
for which there is a specified lag between observations of average exposure
and disease rate. Unfortunately, there may be little prior information about
latency on which to base the lag, or appropriate data may not be available to
accommodate the desired lag.

COLLINEARITY Another problem with ecologic analyses is that certain pre-
dictors, such as sociodemographic and environmental factors, tend to be more
highly correlated with each other than they are at the individual level (10, 62).
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The implication of such collinearities is that it is very difficult to separate the
effects of these variables statistically; analyses yield model coefficients with
very large variances, so effect estimates may be severely distorted. In general,
collinearity is most problematic in multiple-group ecologic analyses involving
a small number of large, heterogeneous regions (15, 64).

MIGRATION ACROSS GROUPS  Migration of individuals into or out of the source
population can produce selection bias in a study conducted at the individual
level because migrants and nonmigrants may differ on both exposure preva-
lence and disease risk. Although it is clear that migration can also cause
ecologic bias (36, 49), little is known about the magnitude of this bias or how
it can be reduced in ecologic studies (46).

CONTEXTUAL AND MULTILEVEL ANALYSES

Knowing the severe methodologic limitations of ecologic analysis for making
biologic inferences, many epidemiologists who report ecologic results argue
that there can be no cross-level bias because their primary objective is to
estimate an ecologic effect. For example, we might want to estimate the
ecologic effect (effectiveness) of state laws requiring smoke detectors by
comparing the fire-related mortality rate in those states with the law vs other
states without the law (45). Although this is a reasonable objective, the inter-
pretation of observed ecologic effects is complicated by two issues:

First, biologic inference may be implicit to the objectives of an ecologic
study unless the underlying biologic and contextual effects are already known
from previous research. Can smoke detectors placed appropriately in homes
reduce the risk of fire-related mortality in those homes by providing an early
warning of smoke? Does living in an area where most homes are properly
equipped with smoke detectors reduce the risk of fire-related mortality in
homes with and without smoke detectors? The first question refers to a possible
biologic (biobehavioral) effect; the second question refers to a possible con-
textual effect. Even if these effects exist, the ecologic effect of smoke-detector
laws also depends on other factors, e.g. the level of enforcement, the quality
of smoke-detector design and construction, the cost and availability of smoke
detectors, and their proper placement, installation, operation, and maintenance.
In an ecologic study without additional information, the ecologic effect is
completely confounded with biologic and contextual effects.

The second complicating issue in interpreting observed ecologic effects is
the need to control for confounders measured at the individual level. Even if
the exposure is a global measure, such as a law, groups are seldom completely
homogeneous or comparable with respect to confounders. To make a valid
comparison between states with and without smoke-detector laws, for example,
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we would need to control for differences among states in the joint distribution
of extraneous risk factors, such as socioeconomic status of residents, firefighter
availability and access, building design, and construction (see also Problems
of Confounder Control).

Perhaps the best solution to these problems is to incorporate both individ-
ual-level and ecologic measures in the same analysis. This approach might
include different measures of the same factor; e.g. each subject would be
characterized by his/her own exposure level as well as the average exposure
level for all members of the group to which s/he belongs (aggregate measure).
Not only would this approach help to clarify the sources and magnitude of
ecologic and cross-level bias, but it would also allow us to separate biologic,
contextual, and ecologic effects. It is especially appropriate in social epidemi-
ology, infectious-disease epidemiology, and the evaluation of population in-
terventions.

There are two statistical methods for including both individual-level and

- ecologic measures in the same analysis. The first method, often called contex-

tual analysis in the social sciences, is a simple extension of conventional
modeling such as multiple linear regression or logistic regression (5, 34). The
model, which is fit to the data at the individual level, includes both individ-
ual-level and ecologic predictors. For example, suppose we wanted to estimate
the effect of “herd immunity” on the risk of an infectious disease. The risk (y)
of disease might be modeled as a function of the following linear component:
by + byx + byx + byxx, where x is the individual’s immunity status and X is the
prevalence of immunity in the group to which that individual belongs (65).
Therefore, b, represents the contextual effect of herd immunity, and b repre-
sents the interaction effect, which allows the herd-immunity effect to depend
on the individual’s immune status. The interaction term is needed in this
application, since we would expect no herd-immunity effect among immune
individuals. Note, however, that the interpretation of the interaction effect
depends on the form of the model (35, 57).

An important limitation of contextual analysis is that observations for indi-
viduals within groups are not likely to be independent, which is a basic
assumption of conventional modeling. If there are contextual effects, then the
outcomes for individuals in the same group are more likely to resemble each
other than are the outcomes for individuals in different groups. To handle this
problem of within-group clustering, we treat the sampling of individuals from
groups as random effects; this approach is called multilevel modeling, hierar-
chical regression, or random-effects modeling (6, 71, 72).

Multilevel modeling is a powerful technique with many applications; it can
be used to estimate contextual and ecologic effects and to derive improved
(empirical Bayes) estimates of biologic effects. At the first level of analysis,
we might predict individual risk or health status within each group as a function
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of several individual-level variables. At the second (ecologic) level, we predict
the estimated regression parameters (e.g. the intercept and slopes) from the
first level as a function of several ecologic variables. For example, Humphreys
& Carr-Hill (33) used multilevel modeling to estimate the contextual effect of
living in a poor area on several health outcomes, controlling for the individual’s
income and other covariates. In a conventional ecologic analysis, the effects
of living in a poor area and income would be confounded, and ecologic
estimates of effect would be susceptible to cross-level bias.

CONCLUSIONS

Several practical advantages make ecologic studies especially appealing for
undertaking various types of epidemiologic research. Despite these advantages,
however, ecologic analysis poses major problems of interpretation when mak-
ing ecologic inferences and especially when making biologic inferences (due
to ecologic bias, etc). From a methodologic perspective, it is best to have
individual-level data on as many relevant nonglobal measures as possible. Just
because the exposure variable is measured ecologically, for example, does not
mean that other variables should be as well.

Even when the stated purpose of the study is to estimate an ecologic effect,
biologic inference is usually implicit in epidemiology. Thus, to address the
underlying research questions, we typically would want to estimate and/or
control for biologic and contextual effects, preferably using multilevel analysis.
In contemporary epidemiology, the “ecologic fallacy” reflects the failure of
the investigator to recognize the need for biologic inference and thus for
individual-level data.
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Ecologic versus individual-level sources of

bias in ecologic estimates of contextual
health effects

Sander Greenland

A number of authors have attempted to defend ecologic (aggregate) studies by
claiming that the goal of those studies is estimation of ecologic (contextual or
group-level) effects rather than individual-level effects. Critlcs of these attempts
point out that ecologic effect estimates are inevitably used as estimates of individ-
ual effects, despite disclaimers. A more subtle problem is that ecologic variation
in the distribution of individual effects can bias ecologic estimates of contextual
effects. The conditions leading to this bias are plausible and perhaps even common
in studies of ecosocial factors and health outcomes because social context is not
randomized across typical analysis units (administrative regions). By definition,
ecologic data contain only marginal observations on the joint distribution of indi-
vidually defined confounders and outcomes, and so identify neither contextual
nor individual-level effects. While ecologic studies can still be useful given appro-
priate caveats, their problems are better addressed by multilevel study designs,
which obtain and use individual as well as group-level data. Nonetheless, such
studies often share certain special problems with ecologic studies, including prob-
lems due to inappropriate aggregation and problems due to temporal changes in

covariate distributions.
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Aggregate studies, confounding, contextual studies, ecologic fallacy. ecologic studies,

Accepted

Studies limited to characteristics of aggregates (groups) of
individuals are usually termed ecologic studies, a usage that will
be adopted here.}= This usage is perhaps unfortunate, for the
word ‘ecologic’ suggests that such studics are especially appro-
priate for studying the impact of environmental factors, includ-
ing societal characteristics. 1 will here review some criticisms of
this notion, arguing that it arises from confusion of an ecologic
perspective (addressing relations at the environmenial or social
level) with ecologic studies. As a number of authors have pointed
out,5~12 overcoming this confusion requires adoption of a
multilevel perspective, which allows integration of theory and
observations on all available levels: physiological (which exam-
ines exposures and responses of systems within individuals),
individual (which examines exposures and responses of indi-
viduals), and aggregate or contextual (which examines exposures
and responses of aggregates or clusters of individuals, such as
locales or societies).

Defences of ecologic studies argue (correctly) that many
critics have presumed individual-level relations are the ultimate

Dep&nmcm 8! nplden.liolosy. IJCLA Schoc;l of Public Health, and Department
of Statistlcs, UCLA College of Letters and Science, 22333 Swenson Drive,
Topanga, CA 90290, USA.

target of inference of all ecologic studics, when this is not
always s0,2131% and that contagious outcomes necessitate
group-level considerations in modelling regardless of the target
level.!® They also point out that an ecologic summary may have
its own direct effects on individual risk beyond that conferred
by the contributing individual values; for example, average eco-
nomic status of an area can have effects on an Individual over
and above the effects of the individual’s economic status.'¢17
Unfortunately, some defences go on to make implicit assumptions
to ‘prove’ that entire classes of ecologic studies are valid, or at
Jeast no less valid than individual-level analyses; see Greenland
and Robins,'8!? Morgenstern,> and Naylor®® for critical
commentarics against such arguments in the health sciences.
Some ecologic researchers are well aware of these problems and
explicate the assumptions they use,2!+22 but still draw criticism
because of the sensitivity of inferences to those assumptions.>-2
Thus I will review some controversial assumptions that appear
common in ecologic analyses of epidemiological data. Finally, I
will briefly discuss multilevel methods that represent both
individual-level and ecologic data within a single model.

The present paper relies on simple illustrations designed to
make the points transparent to non-mathematical readers, and
focuses on problems of confounding and specification bias;

1343
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a companion papc:r'2 provides an overview of the underlying
mathematical theory. Many other issues have been raised In the
ongoing ecologic-study controversy; see the references for
details, especially those in the Discussion section.

How Ecologic Confounding Depends
on Joint Individual-level Distributions

There are two major types of measurements on aggregates:
Summaries of distributions of individuals within aggregates,
such as mean age and per cent female; and purely ecologic
{contextual) variables that are defined directly on the aggregate,
such as whether there is a needle-exchange programme in an
arca. The causal effects of the latter purcly contextual varlables
are the focus of much social research and eccosocial ecpi-
demiology.10-1326-27 Nonethcless, most outcome variables of
public-health importance are summaries of individual-level
distributions, such as prevalence, incidence, mortality, and life
expectancy, all of which can be expressed in terms of average
individual outcomes.28 Furthermore, many contextual variables
are measured by surrogates that are summaries over individuals;
for example, neighbourhood social class is often measured by
average income and average education.

The presence of summary measures in an ecologic analysis
introduces a major source of uncertainty in ccologic inference:
Effects on summaries depend on the joint individual-level
distributions within aggregates, but distributional summaries
do not fully determine {and sometimes do not even seriously
constrain} those joint distributions. This problem corresponds to
the ‘information lost duc 10 aggregation’, and is a key source of
controversy about ecologic studies.2?

Panel 1 of Table 1 illustrates this problem. For simplicity, just
two areas are used here, but examples with many areas have
also been glvcn.ls Suppose we wish to assess a contextual effect,
i.e. the impact of an ecologic difference between areas A and B
(such as a difference in laws or social programmes) on the rate
of a health outcome, and we measure this effect by the amount
RR,4 that this difference multiplies the rate (the true effect of
being in A versus being in B). One potential risk factor X differs in

distribution between the areas; an effect of X (measured by the
rate ratio RRy comparing X =1t0 X = 0 within areas) may be
present, but we observe no difference in rates between the areas.

Do the ccologic data in Panel 1 of Table 1 demonstrate no con-
textual cffect? That is, do they correspond best with RR, = 1?
Unfortunately, the ecologic (marginal) data on X distributions
and the outcome rates are mathematically equally compatible
with a broad spectrum of possibilities, two of which are given in
Panels 2 and 3 of Table 1: In the first, area A has benefited from
the contextual difference (RR4 < 1), but this fact has been
obscured by area A’s higher prevalence of X, which is harmful
(RRx > 1); in the second, arca A has been harmed by the con-
textual difference (RR, > 1), but this fact has been obscured by
arca A’s higher prevalence of X, which is beneficial (RRy < 1).
One could obtain the correct answers in either possibility by
comparing the area rates after they had been standardized dir-
ectly to a common X distribution; such standardization would
however require the X-specific rates within the areas, which are
not avallable in the example. Furthermore, an ecologic regres-
sion could not solve the problem because it would only regress
the crude area rates on the proportion with X = 1 in each area:
Because both crude area rates are 5.6, the ecologic X-coefficient
would be zero, and so the regression would produce no
X-adjustment of the arca rates.

Lacking within-arca data on the joint distribution of X and
the outcome, an ecologic analysis must necessarily rely on ex-
ternal (prior) information to make inferences about the con-
textual effect, although the margins may imposc some bounds
on the ;1osslbilixit:s.2"29'm If one were willing to assume that
the X-specific rates in each arca were proportional to those in
some extemal reference population with known X-specific rates,
one could use those external rates to construct and compare
standardized morbidity ratios {SMR) {or the areas (indirect
adjusiment). Unfortunately, such external rates are rarcly avail-
able for all important covariates, and so one must fall back on
other external {prior) information to produce an effect estimate.

The results of such an analysis can be disappointing if the
prior information is ambiguous. if X indicates {say) regular
cigarette use and the outcome is total mortality, we might be

Table 1 An example demonstrating the complete confounding of contextual and individual effects in ecologic data: The ecologic data cannot
identify the effect of group (A versus B) on the rate of the outcome Y = 1 when only a marginal summary of the individual-level covariate X is
available, N = denominator {in thousands of person-years); RR, and RRy are the rate ratios for the true elfects of A versus B and of X = 1 versus

X = 0, respectively

1. Ecologlc (marginal) data:




BECOLOGIC VERSUS INDIVIDUAL-LEVEL SOURCES OF BIAS 1345

confident that RRy Is well above one and hence that the con-
textual effect (i.e. the A-B rate ratio) is protective. If however X
indicates regular alcohol consumption we might feel justified in
ruling out scenarios involving values for the relative risk RRy
that are very far from 1, but, because alcohol may be protective
at moderate levels and causative at higher levels, we could not
be sure of the direction of RRy; that would depend on the
relative proportion of moderate and heavy drinkers in the
areas. As a consequence, we could not be sure of the direction
{let alone degree) of confounding in the ecologic estimate of
the contextual effect (Le. the ecologic A-B rate ratlo of
5.6/5.6 = 1).

The problem of cross-level confounding just illustrated has
been discussed extensively since the early 20th century (Achen
and Shively2®<M1y and s a mathematically trivial consequence
of the fact that marginals do not determine joint distributions.
Yet this non-identification problem, which is an absolute de-
marcation between ecologic and individual-level studies, continues
to be misunderstood or ignored by many ecologic researchers,
so much that Achen and Shively>*P8 remark: ‘A cynic might
conclude that social sdentists tend to ignore logical problems
and contradictions in their methods if they do not see anything
to be done about them’.

Their remark applies to the health sciences as well, as
illustrated by this quote: ‘In practice, it may be that confounding
usually poses a more intractable problem for ecological than for
individual-level studies. But this is duc to the greater reliance
on secondary data and proxy measures in ecological studies,
not to any problem inherent in ecological studies’)3P-820 (emphasis
added).

While ecologic studies do suffer from greater reliance on
secondary data and proxy measures, this passage is typical of
defences that overlook the non-idemifiable aspects of con-
founding inherent in ecologic studies; other examples include
Cohen,31-33 susser,>® and Pearce.!4P682 Table 1 fllustrates that,
given confounding by a measured risk factor X, the individual
level data allows one to control the confounding in the most
straightforward way possible: Stratify by X. In contrast, control
of confounding by X cannot be accomplished using only the
ccologic data, despite the fact that the effect under study Is
contextual (the effect of the soclal differences between areas
A and B on outcome rates). Because contextual and individual
cffccts are completely confounded In ecologic data,®'? the only
solutions to this problem are either to obtain individual data
within the ecologlc units, or else resort 1o using assumptions
that are untestable with the ecologic data and liable to strong
dispute.18:19:29

Another fallacy in some defences of ecologic studies is the
claim that individual-level information is not needed if one is
interested only in contextual (ecologic) effects. Examples like
that above show that such ‘holistic’ arguments are incorrect,
especially in health swudies in which the outcome measure
is an Individual-level summary, because individual-level factors
can confound the ecologic results even if the study factor is
contextual.&12 Holistic arguments also tend to overlook that
ecologic data usually rcfer to arbitrary administrative groupings,
such as counties, that are often poor proxies for soclal context
or environmental cxposures,2%PP-20-22 The severity of this
problem is illustrated by the potential for great sensitivity of
ecologic relations to the grouping definition.>?

The non-identification problem illustrated in Table 1 applies
symmetrically to ecologic estimates of average individual-level
effects (cross-level inferences from the ecologic to individual
level).12:29:36 Bor example, if Table 1 represented a contrast of
two areas A and B with a goal to estimate the impact of differ-
ences in the X distribution, we see that very small contextual
effects can obscure substantial X effects in the ecologic data.
My emphasis here, however, is that even if the overall goal is
to estimate contextual effects, ecologic manifestations of those
effects (Panel 1 of Table 1) can be confounded due 10 individual-
level relations, and are not estimable without information about
those relations.

To summarize: Observational ecologic data alone tell us little
about either contextual or individual-level effects on summary
measures of population health, precisely because (by definition)
they lack data on individual-level asseclations. Thus, methods
that purport to adjust ecologic results for the confounding
problem just described either must employ external data about
non-identified individual relations, or must invoke assumptions
about those relations. The non-identified natwre of the relations
means that neither approach can be fully tested (validated)
against the ecologic data.

Some Assumptions and Fallacies
in Ecologic Analyses

All 100 often, identification is forced by making fairly arbitrary
modelling assumptions. Controversy then arises surrounding
the credibility or strength of the assumptions used to derive effect
estimates from ecologic data, the sensitivity of those estimates
10 changes in assumptions, and failures of proposed methods in
real or simulated data. For examples, compare Freedman ef al3?
versus their discussants; Greenland and Morgenstern38-39
and Richardson and Hemon?®® versus Cohen;3! Greenland and
Robins, !#-19 piantadosi,4! Stidley and Samet*? and Lagarde and
Pershagen®># versus Cohen;323? King2!22 versus Rivers,2
Cho,%% Frcedman ef al.,2%35 and the example in Stoto; % and
Wen and Kramer*? versus Naylor.20

All causal inferences from observational epidemiological data
must rely on restrictive assumptions about the distributions of
errors and background causes. Most estimates also rely on para-
metric models for effects. Thus, validity of inferences depend on
examining the robustness of the estimates to violations of the
underlying assumptions and models.

Randomization assumptions

Interpretation of an assoclation as a causal effect must depend
on some sort of non-confounding or ignorability assumption,
which in statistical methodology becomes operationalized as a
covariate-specific randomization assumption.*34° Such causal
inferences are usually not robust to violations of those assump-
tions, and this non-robustness is a major source of controversy
in most non-cxperimental research.

Suppose we are to study K communities. The distinction
between ccologic and individual-level confounding may
become clearer by contrasting two levels of randomized inter-
vention to reduce sexually transmitted diseases (STD):

(Trial C) A community-health programme (e.g. establishment
of free STD clinics) is provided at random to half of the com-
munities (K is assumed to be even).
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{Trial W) Within community k, a trcatment (e.g. a series of free
STD-clinic visits) is randomly provided to a proportion py of
individuals, and py, varies across communitics.

Trial C is a cluster-randomized design. In this trial, the ecologic
data would comprise a community treatment-status indicator
plus the outcome measures {e.g. subsequent STD rates). These
data would support randomization-based inferences about what
the average causal cifect the programme would be for the K
communities (the communities would be the analysis units, and
the sample size for the inferences would be K). Nonetheless,
analysing the individual-level data from trial C as a K-stratum
study with fixed treatment margin (the usual individual-level
analysis) would support no infercnces at all about treatment
effects because each stratum (community) would have a zero
margin. Put another way, community and treatment effects would
be completely confounded within the standard individual-level
model. Analysis of the individual-level data would instead
require use of methods for cluster-randomized trials.

In trial W, the ecologic data would comprise the proportion
treated (p) in each community, along with outcome measures.
Unless the py had been randomly assigned across communities
(as in trial C, in which py = 0 or 1), the ecologic data would not
support randomization-based inferences about treatment
effects: If the p, were constant, there would be no data in-
formation for such an analysis; if the py varied, the community
and treatment effects would be completely confounded. (This
obscrvation is essentially a contrapositive version of Goodman's
identification condition for ecologic regression,>® transiated 10
the present causal setting.) Nonetheless, the individual-level
data from any of or all the communities with 0 < p;, <1 would
support the usual randomization-based inferences {e.g. exact
tests stratified on community). Taking X as the trcatment in-
dicator and k = A, B, Pancls 1 and 2 can be used as an example
of trial W with p, = 0.6 and pg = 0.4; it then exhibits complete
confounding in the ecologic data and no confounding of the
individual-level data within community.

Observational studies

Observational studies suffer from a fundamental weakness in
interpreting estimated associations as causal effects: The validity
of such interpretations depend on assumptions that natural or
social circumstances have miraculously randomized the study
exposure, e.g. by carrying out trial C or W for us. For individual-
level studies, it is widely recognized that the number of
individuals in the study 1ells us nothing about the validity of this
or other such ‘no-confounding’ assumptions. Larger size only
increases the precision of randomization-based inferences by
reducing the chance that randomization left large imbalances of
uncontrollable covariates across treatment groups. This benefit
of size stems from and depends on an assumption of exposure
randomization, as in trial W, Systematic imbalances within
groups are by definition violations of that assumption.

The same argument applies to ecologic studies. The number
of (say) ecologic groups involved tells us nothing about the
validity of an assumption that the exposure distribution (p, in
the above binary-trecatment trials) was randomized across the
groups. The benefit of a large number of groups stems from and
depends on an assumption that those distributions were random-
ized, as in trial C. Systematic imbalances across groups are by

definition violations of that assumption. Despite thesc facts,
defences of ecologic studics have appeared based on the circular
argument that large numbers of arcas would reduce the chance
of ecologic confounding:3! this drcularity arises because the
large-number effect assumes randomization across areas, which
is precisely the assumption in doubt.

Covariate control

To achieve some plausibility in causal inferences from observa-
tional data, researchers attempt to ‘control’ for covariates that
affect the outcome but are not affected by the exposure (poten-
tial confounders). In individual-level studies, the traditional
means of control is to stratify the data on these covarlates,
because within such strata the exposed and unexposed units
cannot have any imbalance on the covariates beyond the stratum
boundaries, ¢.g. within a 65-74-year-old age stratum the cx-
posed and unexposed could not be more than 10 years apart in
age. Causal inferences then proceed by assuming randomization
within these strata; however implausible it may be, in the face
of observed imbalances this assumption is always more plausible
than the assumption of simple (unstratifiedy randomization.

The stratification process can be applied in ecologic analyses,
but usually faces serious data limitations. With few exceptions,
the ecologic exposures and covariates in public-use databases are
insufficient in detail and accuracy to create strata with assured
balance on key covariates. For example, in ecologic studies of
radon Jevels and lung-cancer rates across US countics, the key
covariates are the county-specific distributions of age, sex, race,
and smoking habits. To lay to rest concerns about bias from
possible relations of these strong lung-cancer risk factors 1o
radon exposure, one would have 1o stratify the county data by
age, sex, race, and smoking behaviour {note that smoking behav-
four is multidimensional, as it includes intensity, duration, and
type of cigarette use). One would then examine the relation of
radon distributions to Jung-cancer rates across the stratum-specific
county data. This stratified analysis requires the county-specific
joint distributions of age, sex, race, smoking behaviour and radon,
and age, sex, race, smoking behaviour and lung cancer. Unfortu-
nately, to date no such data have been available. Although data
on the age-sex-race-lung cancer distributions in counties are
published, their joint distributions with radon and smoking are
unobserved; only marginal distributions of radon are surveyed,
and only crude summaries of cigarette sales are available.

The limitations of the ecologic data may be better appreciated
by considering an analogous problem in an individual-level
study of residential radon and lung cancer. One might attempt
to ‘control’ for smoking by using cigarette sales in a subject’s
county of residence as a surrogate for smoking behaviour {as in
Cohen?!). Presumably, few cpidemiologists would regard this
strategy at providing adequate control of smoking, especially
upon considering that it would impute an identical ‘smoking’
level to every subject in the county, regardless of their age, sex,
or lung-cancer status. The shortcomings of this control arise
precisely because smoking behaviour varies to an extreme among
individuals within any given county, much more so than average
smoking behaviour varies across countics.}®

Because different randomization assumptions underly causal
inferences from individual-level and ecologic studies, it can
happen that these two study types require control of different
(though overlapping) sets of covariates for valid inferences.
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See Greenland and Robins!® and Robins ef al.3! for discussions
of this point.

Modelling assumptions

To get around the ecologic data limitations described above,
ccologic-study investigators have employed analysis models
under which the available ecologic data (comprising simple
marginal summaries of crude exposure and covariate measures)
are sufficient for valid effect estimation. As mentioned earlier,
these models are restrictive and no more supported by data than
randomization assumptions. For example, a common assump-
tion in ecologic analyses is that cffects follow a multiple-linear
regression model. This assumption is both natural and some-
what misleading, because a multiple-linear model for individual-
level effects induces a multiple-linear ecologic model, but this
parallel relation between the individual and ecologic regressions
fails in the presence of non-additive or non-linear effects within
the ecologic groups.!8.32-56

Not even the functional form of individual-level effects (which
can confound ecologic assodiations, as in Table 1) is identified
by the marginal data in ecologic studies. For example, suppose
individual risk R structurally depends on the covariate vector X
(which may contain contextual variables) via R = {{X), and A
indexes contexts {such as gcographical areas). The ccologic
observations identify only relations of average risks E,(R) to
average covariate levels E, (X) across contexts. These ecologic
relations will generally not follow the same functional form as
the individual relations because E5(R) = E5[f(X)] # {(E5(X)]
except in some very spedal cases, chiefly those in which f is
additive and linear in all the X components.

Most analyses of individual-level epidemiological studies
assume a multiplicative (loglinear) model for the regression of
the outcome on exposure and analysis covariates, in which
{{X) = exp(XP). Such non-linearities in individual regressions
virtually guarantee that simple ecologic models will be mis-
specified, and thus further diminish the effectiveness of ecologic
control of confounding, although the problem can be mitigated
somewhat by expanding the ecologic medel to include more
detailed covariate summaries if those are available,'837 and by
including higher-order covariate terms,30.33.56

Unfortunately, some authors have attempted to deny the
misspecification problem by claiming that a lincar regression
is justified by Taylor’s theorem.?! This justification is circular
because approximate linearity of {{X) over the within-context
{area-specific) range of X is required for a first-order Taylor
approximation of {(X) 10 be accurate.'834 Furthermore, in
most applications this requirement is known to be violated. For
example, the dependence of risk on age is highly non-linear
for nearly all cancers. One may attempt 1o circumvent the latter
prablem by using age-specific outcomes, but will then face the
problem that one lacks age-context-specific measures of poten-
tial confounders such as smoking. Use of age-standardized rates
also fails to solve the problem for that requires one use age-
standardized measures of the covariates in the regression model
(see Discussion) and such measures are rarely available.

Multilevel Methods

The vital statistics and registry data used in eccologic health
studies are collected at great expense and so it scems imperative

to exploit them fully. Furthermore, these data often describe
outcomes across a much broader spectrum of exposures than
found in most individual-level studies, suggesting greater power
to detect effects could be achieved if confounding were con-
trolled. For example, individual-level dietary studies are usually
conducted in restricted populations with litile dietary variation
relative to international variation, which limits their power and
suggests much could be learned from intematicnal comparisons.’®
A major problem of international ecologic comparisons,
however, is the presence of numerous other differences across
countries that could confound the results.

To address this ecologic confounding problem, one may apply
individual-level risk models to within-region survey data and
aggregate the resulting individual risk estimates for comparison
to observed ecologic rates.>43 For example, suppose we have
a covariate vector X measured on Ny surveyed individuals in
region k, a rate model r(x; B) with a p estimate f} from individual-
level studies (e.g. a proportional-hazards model derived from
cohort-study data). and the cbserved rate Ty in region k. Then
we may compare Ty to the arca rate predicted from the model
applied to the survey data, Z;r(x;f)/Ny, where the sum is over
the surveyed individualsi = 1, ..., Ny and x, is the value of X for
survey individual i. This approach Is a regression analogue of
indirect adjustment: fis the external information, and so corres-
ponds to the reference rates used to construct expectations in
SMR.

Unfortunately, fitted models generalizable to the reglons of
interest are rarely available. Thus, starting from the individual-
level model ry (x:B) = roxexp(xP), Prentice and Sheppard*® and
Sheppard and Prentice®® proposed estimating the individual
parameters P by direcily regressing the ¥y on the survey data
using the induced aggregate model ry = ry By [exp(xp)), where
Ey[exp(xP)] is the average of exp(xp) over the indlviduals in
region k. Prentice and Sheppard®”® show how the observed rates
Ty and the survey data (the x;) can be used to it this model. As
do earlier authors, they estimate region-specific averages by the
sample averages, but in the absence of external data on § they
impose identifying constraints on the region-specilic baseline
rates rg, (e.g. by treating them as random effects); see Cleave
¢t al.} and Wakefield®! for related approaches.

Prentice and Sheppard call their methed an ‘aggregate-data
study’; however, much of the social-science literature has long
used this term as a synonym for ‘ecologic study’,'®¢ and so 1
would instead call it an Incomplete multilevel study {‘incomplete’
because, unlike standard multileve! analyses,5? individual-level
outcomes are not obtained). Prentice and Sheppard conceived
their approach in the context of cancer research, in which
few cases would be found in modest-sized survey samples. For
studies of common acute outcomes, Navidi ef al.3 propose a
complete multilevel strategy in which the within-region surveys
obtain outcome as well as covariate data on individuals, which
obviates the need for indentifying constraints.

Multilevel studies can combine advantages of both individual-
level and ecologic studies, including the confounder control
achicvable in individual-level studies, and the exposure varia-
tlon and rapid conduct achievable in ecologic studies.3” These
advantages are subject to a number of assumptions that must be
carefully evaluated,®3 several of which they share with ecologic
studies. For example, muliileve) studies based on recent indi-
vidua) surveys must assume stability of exposure and covariate



1348 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

distributions over time to ensure that the survey distributions
are representative of the distributions that determined the
observed ecologic rates; this assumption will be suspect when
there were individual behavioural trends or important degrees
of migration following the exposure period relevant to the ob-
served rates.5264 They also can suffer from the problem, men-
tioned earlier, that the aggregate-level {ecologic) data usually
concern arbitrary administzative or political units, and so can be
poor contextual measures. Furthermore, multilevel studies face
a major practical limitation in requiring daia from represent-
ative samples of individuals within ecologic units, which can be
orders of magnitude more cxpensive to abtain than the routinely
collected data on which most ecologic studles are based.

In the absence of valid individual-level data, mulilevel
analysis can still be applied to the available ecologic data via
non-identified random-cocfficient regression. As in applications
to individual-level studies,®? this approach begins with spe-
cification of a hierarchical prior distribution for parameters not
identified by available data. The distribution for the exposure
cffect of interest is then updaied by conditioning on the avail-
able data. This approach is a multilevel extension of random-
cifects ecologic regression to allow constraints on § (including
a distribution for B) in the aggregate model, in addition to
constraints on the ry,. It is essential to recognize that these
constraints are what identify exposure effects in ecologic data;
hence, (as with all ecologic results), a precise cstimate should
always be traced to the constraints that produced the precision.

Discussion

The present review has focused on confounding problems in
ccologic studies. These arc not the only such problems faced by
ccologic studies, Two others are especially noteworthy for theic
divergence from individual-level study problems.

Non-comparability among ecologic analysis variables

Non-comparable restriction and standardization of variables
remains common in ecologic analyses, despite the fact that it
can lead to considerable bias.% Typical examples involve restricted
standardized rates regressed on crude ecologic variables, such as
sex-race-specific age-standardized mortality rates regressed on
contextual variables (e.g. air-pollution levels) and unrestricted
unstandardized summaries (e.g. per-capita cigarette sales), If, as
is usual, only unrestricted unstandardized regressor summaries
are available, less bias might be incurred by using the crude
(rather than standardized) rates as the outcome and controlling
for ecologic demographic differences by entering multiple
age-sex-race-distribution summaries in the regression®® (e.g.
proportions in different age-sex-race categories). More work is
needed to develop metheds for coping with non-comparability.

Measurement errors

Elfects of measurement errors on ecologic and individual-level
analyses can be quite different. For example, Brenner ¢f al.57
found that independent non-differential misclassification of a
binary exposure could produce bias away from the null and cven
reverse estimates from a standard linear or log-linear ecologic
regression analysis, cven though the same crror would produce

only bias toward the null in a standard individual-level analysis;
analogous results werc obtained by Carroll®8 for ecologic probit
regression with a continuous exposure. Results in Brenner et al67
also indicate that ecologic regression estimates can be cxtraordin-
arily sensitive to errors in exposure measurement. On the other
hand, Brenner et al.%° found that independent non-differential
misclassification of a single binary confounder produced no in-
crease in bias in an ecologic linear regression. Similarly, Prentice
and Sheppard®® and Sheppard and Prentice®® have found robust-
ness of their incomplete multilevel analysis to purely random
measurement errors.

In addition to assuming very simple models for individual-
level errors, the foregoing results also assume that the ecologic
covariates in the analysis are direct summaries of the individual
measures. Often, however, the ecologic covariates are subject 1o
errors beyond random survey error or individual-level measure-
ment errors, as for example when per-capita sales data are used
as a proxy for average individual consumption, and when arca
measurements such as pollution levels are subject to errots.
Some work has been done examining the impact of such ecologic
measurement error on cross-level inferences under simple error
models,79 but more research is needed, espedially for the situa-
tion in which the grouping variable is an arbitrary administrative
unit serving as a proxy for a contextual variable.

Conclusion

The validity of any inference can only benefit from explication
and critical scrutiny of the assumptions used to derive the infer-
ences. My focus on ecologic-study problems stems solely from
what I perceive as a common blindness to (or even denial of)
the special assumptions needed to derive effect estimates from
ccologic data alone, and the profound sensitivity of ecologic
estimates to those assumptions (even if the estimate is of a
contextual effect). The fact that individual-level studies have
complementary limitations does not excuse this oversight.

Nonetheless, despite the critical tone of my remarks here and
in earlier articles, [ believe that ecologic data arc worth exam-
ining, as demonstrated by careful ccologic analyses®-38 and by
methods that combine individua) and ecologic data8-11.33.60
Furthermore, it is important 1o remember that the possibility
of bias does not demonstrate the presence of bias, and that
a conflict between ccologic and individual-level estimates does
not by itself demonstrate that the ccologic estimates are the
more biased.13-18:19.71 This is because (1) the two types of
estimates are subject to overlapping but distinct sets of biases,
and ft can happen that the individual-level estimates are the
more biased; and (2) the effects measured by the two types of
estimates are overlapping but distinct, with ecologic estimates
incorporating a contextual component that is frequently absent
from the individual estimates due to contextual (population)
restrictions on individual-level studies. Indeed, the contextual
component may be viewed as both a key strength and weakness
of ccologic studies, for it is often of greatest substantive import.
ance even as it is especially vulnerable to confounding. Thus, in
the absence of good multilevel studics, ecologic studies will no
doubt continue to fuel controversy, and so inspire the conduct
of potentially more informative studies.
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