M. tuberculosis: organism, transmission and pathogenesis

Marcel A. Behr marcel.behr@mcgill.ca www.molepi.mcgill.ca

M. tuberculosis: overview

- ◆ Organism
 - M. tuberculosis complex
- **♦** Transmission
 - Disease as an 'Exit Strategy'
- ◆ Pathogenesis
 - How does organism infect, cause disease and transmit?

Organism: Current view

- ♦ Most human TB due to M. tuberculosis
 - M. bovis rare
 - M. africanum geographically restricted
- ◆ Geography-associated lineages:
 - Reproducible in different settings
 - Consistent with two waves of spread:
 - » Walked out of Africa
 - » Then sailed out of Europe

Organism: Pending questions

- ◆ Are strains of *M. tuberculosis* equivalent?
 - Disease that they cause?
 - Response to treatment?
 - Ability to spread?
 - Capacity of vaccines to prevent?
- ◆ If yes, what explains clinical and epidemiologic heterogeneity?
- ♦ If no, do we need to tailor interventions, stop the 'one size fits all' approach?

Chest x-ray in pulmonary TB

Used as a diagnostic tool

Also, indicator of the extent of biological process

Cavity represents collection of bacteria and the immune-pathology they have induced

This pathology causes patient to cough, expelling thousands of bacteria into the air

Measuring transmission

- ♦ Pre-1992, transmission inferred
 - E.g. household contacts have higher rate of TB than others
- ◆ Post-1992, direct documentation by DNA-fingerprinting methods
- ◆ Goal:
 - Use bacterial genome as a tool against the pathogen, through strain comparisons

Molecular epidemiology questions

- ◆ Patient: TB recurrence
 - If new strain, can infer re-infection
- ◆ Outbreak: Extent
 - Are all people in a suspect outbreak infected by the same strain?
- ◆ Population: Ongoing spread
 - What proportion of TB cases in defined jurisdiction represent transmission?

Transmission: Current view

- ♦ We can now document transmission with great accuracy
- ◆ Degree of TB due to reactivation vs. transmission varies considerably between settings
 - Between countries, e.g. Montreal vs.Capetown
 - Within countries, e.g. Montreal vs.
 Nunavik

Transmission: pending questions

- ◆ Do all strains transmit equally?
- ◆ Do all hosts transmit equally?
- ◆ Can we immunize to prevent progression to disease, and hence contagion?
- ◆ If we cannot modify hosts or their strains, how best can we modify the environment?

Clinical States to Pathogenesis

- ◆ Tuberculous infection = latent infection = LTBI
 - Clinically latent, either because bacteria latent or bacterial replication = death
 - Tuberculin / IGRA positive
- ◆ Tuberculosis = TB
 - Clinical disease
 - Culture positive = contagious

GET IN STAY IN

GET OUT SPREAD

Clinical States to Pathogenesis

- ◆ Tuberculous infection = latent infection = LTBI
 - Clinically latent, either because bacteria latent or bacterial replication = death
 - Tuberculin / IGRA positive
- ◆ Tuberculosis = TB
 - Clinical disease
 - Culture positive = contagious

Bacterial factors:

- ♦ What are bacterial factors that permit infection and persistence?
- ♦ What are bacterial factors that provoke disease, to continue transmission cycle?
- ♦ How do you measure their effect?

Defining virulence

- ♦ M. tuberculosis more virulent for humans than cows
- ♦ M. bovis more virulent for cows than humans
- > Which one is 'more virulent'?
 - > M. bovis more virulent in mouse, rabbit
 - Does this matter?

Human vs. animal studies

- ◆ Human data most relevant
 - Not amenable to experimentation
 - » No human TB challenge
 - » Human BCG challenge OK
 - Therefore, limited to observation
 - » Confounded by known & unknown host and environmental variables
- ◆ Human data to generate hypotheses
- ◆ Animal models to test hypotheses

Models to study TB

- ◆ Monkeys closest disease to humans– expensive, also ethics issues
- Rabbits close in pathologyget cavitary lung lesions
- Mice easier, immunology reagentshelp with primary infection
- ◆ Cell culture easiest
 - Only one cell, therefore immunologically simplified

Bacterial factors: e.g. 1 - disease

- ♦ M. tuberculosis causes disease in ~1 / 10 infected
- ♦ BCG vaccine causes disease in ~ 1 / 100,000 immunized
- ♦ Why?

croarray reveal			gions
Regions in TB, not in BCG	# deletions	#ORFs	
Variable among <i>M. tuberculosis</i> isolates	4	43	
Present in <i>M. tuberculosis</i> , missing from <i>M. bovis</i>	7	48	RD1
Present in <i>M bovis</i> isolates, missing from all BCG strains	1	9	
Variably deleted among BCG strains	4	29	
Total:	16	129	
		Behr et al., 1999	

Region of Difference 1 (RD1): Three attenuated strains					
(A) <i>M. tuberculosis</i> (RD1 region intact)	Rv3864	Rv3871	Rv3879c		
(B) <i>M. bovis</i> BCG RD1bcg: Rv3871-Rv3879c		Rv3871	Rv3879c		
(C) <i>M. microti</i> RD1mic: Rv3864-Rv3876	Rv3864	Rv3876			
(D) Dassie bacillus RD1das: Rv3874-Rv3877 ——		Rv3874	Rv3877		
(E) BCG <i>/microti/</i> dassie shared deletion					
		Mostowy	et al., 2004		

RD1 deletion analysis: results

- ◆ Deletion of RD1 from M. tuberculosis results in
 - Decreased growth in macrophages
 - Decreased destruction of macrophages
 - Decreased growth in lungs
 - Decreased spread from lungs to spleen
 - Decreased pathology in host
- ◆ RD1 region lost during derivation of BCG in part responsible for attenuation

Lewis, JID, 2003

Further study of RD1 region

- **♦** Model system, *M. marinum*
 - Causes TB in fish: zebrafish embryos are transparent
- ◆ RD1 deficient bacteria grow fine in macrophages but fail to elicit granuloma formation
- Presence of RD1 in bacteria directs macrophages to aggregate, permitting inter-cellular spread

Volkman, PLOS, 2004 Davis, Cell, 2009

- Propose: Virulent mycobacterium 'wants' to make granulomas
 - If so, granuloma is not a host prison
 - Rather, granuloma is a buffet of host cells

Pathogenesis – current view

- **♦ Much study of** *M. tuberculosis* infection and persistence
 - Pre-requisite for disease
 - Not all mycobacteria that can infect go on to disease and transmission
- Less known about induction of pathology and spread
- ◆ Genomic deletions were easy to find
 - Potentially irrelevant for virulent *Mtb*.

Concluding thoughts - TB

- M. tuberculosis causes vast majority of human TB
 - Strain variability exists, pertinence?
- ◆ M tb. transmission can now be tracked by DNA evidence
 - Can measure interventions to block life cycle
- ◆ Pathogenesis of *M tb*. better understood than 1999
 - Much still to be learned
 - May inform next generation of interventions

Questions?

Marcel Behr marcel.behr@mcgill.ca