Treatment of Active Tuberculosis Montreal TB Course, October 30, 2009

> Dr. Dick Menzies Montreal Chest Institute

Goals of TB Treatment

- Reduce further morbidity and prevent mortality
 - Get better as quickly as possible
- Reduce contagiousness
 - Reduce bacillary load quickly
- Prevent emergence of drug resistance
- Prevent relapse (long term cure)

Features of current standard therapy

- Initial intensive phase
 - Two months duration
 - Four drugs; HRZE
- Continuation phase
 - Four months duration
 - Two drugs: HR
- Fully ambulatory and intermittent

Rifampin duration	Arms (N)	Pooled event rate	95% Conf Interval
No Rifampin	43	11.8%	8.8 – 15
1-2 months	66	11.6%	8.9 – 14
3-5 months	22	6.2%	4.2 - 8.2
6-7 months	131	5.5%	4.8 - 6.3
8+ months	25	1.1%	0.3 – 1.9

Duration of Rifampin and Treatment outcomes

(from multivariate meta-regression)

Duration of RIF	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance IRR (95% CI)
2 Months	2.2 (0.7 – 7.2)	18.6 (7.4 – 47)	7.9 (2.4 – 26)
3 – 5 months	2.5 (0.7 – 8.4)	9.4 (3.3 – 26)	3.2 (0.7 – 14)
6 Months	0.6 (0.2 – 1.7)	6.6 (2.7 – 16)	2.0 (0.7 - 6.0)
≥ 8 Months	1.0 (reference)	1.0 (reference)	1.0(reference)
			6

Association of Number of drugs in regimen and Treatment outcomes (from multivariate meta-regression)

	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance† IRR (95% CI)
Initial phase ≤ 3	1.0 (reference)	1.0(reference)	1.0 (reference)
Initial phase ≥ 4	0.4 (0.2 – 0.7)	0.9 (0.6 – 1.3)	0.4 (0.2 – 0.7)
Continuation = 2	1.0 (reference)	1.0(reference)	1.0(reference)
Continuation ≥ 3	0.5 (0.3 – 0.9)	0.9 (0.7 – 1.2)	0.5 (0.3 – 0.9)

Intermittent therapy

- Possible because of long half life of drugs
- And slow growth of M TB
- Intermittent therapy does work
- What is the lowest frequency?
- How early can it start?

-	•	•	1 7 91
	ntormitton	1001100000	and Lating
4			

Administration of drugs	Arms (N)	Pooled event rate	95% Conf Interval
Daily – all	173	2.6%	1.8 – 3.4
Daily – then intermittent	76	2.0%	0.4 – 3.7
Intermittent all – thrice weekly	53	2.7%	0.1 - 4.4
Intermittent all – twice weekly	17	8.8%	1.5 – 16 9

Intermittent regimens and Relapse

Administration of drugs	Arms (N)	Pooled event rate	95% Conf Interval
Daily – all	149	6.7%	5.4 - 8.0
Daily – then intermittent	65	7.0%	5.1 - 8.9
Intermittent all – thrice weekly	52	6.8%	5.6 - 8.1
Intermittent all – twice weekly	17	10.7%	7.2 – 14.3 ¹⁰

Summary points - current therapy

• Initial intensive phase

- Two months duration is optimal
- Minimum 3 drugs (4 is better)
- INH most potent bactericidal agent
- RIF second most potent, least resistance
- PZA allows total therapy to be 6 mos only
- EMB protects against resistance

- Continuation phase Four months duration is sufficient
 - If Drug-sensitive organisms
 - If HRZ given in first 2 months
 - If INH&RIF given, but PZA not needed
 - Some advantage to 3 drugs vs 2 drugs
- If No Rifampin (INH/EMB or INH/Thiac) then at least 6 months required

12

- Intermittent regimens facilitates DOT
 - Once weekly unacceptable
 - Twice weekly is minimum
 - Thrice weekly better
 - One advantage when doses are missed
- If Intermittent within first month worse outcomes if twice weekly from outset
 - Best is daily therapy in first two months
 - Then switch to intermittent

Emergence of resistance Therapy with one drug (First ever TB trial)

- In 1950 first TB trial was conducted in Britain.
- 109 patients received Streptomycin only
 Only drug available at the time
- Resistance developed rapidly in these patients
 - First detected after three weeks
 - 60% resistant after two months
 - 80% resistant after three months

Rate of spontaneous mutations of M Tuberculosis to anti-TB drugs

Streptomycin	10 -6
Isoniazid	10⁻⁶ - 10⁻⁷
Rifampin	10 ⁻⁸ - 10 ⁻⁹
Ethambutol	10 ⁻⁷ - 10 ⁻⁸
INH&Rif	10 ⁻¹⁴

9

Total number of bacilli – in
different lesions

Latent TB	10 ³	
Infiltrates	10 ⁶ - 10 ⁷	
Cavity (one)	10 ⁸ - 10 ⁹	
Multi-cavities	10^{10} - 10^{12}	
Death	10 ¹³	
		19

Probability of developing resistance during therapy

Number of Drugs	Total number of bacilli				
	104	106	108	1010	1012
One	1%	63%	100%	100%	100%
Two	0	0	.01%	1%	60%
Three	0	0	0	0	0
					20

Drug resistance - prevention and therapy

- To prevent resistance:
 - Minimum two drugs
 - Give at least 3 when bacillary load is high
 - 4 drugs offer better protection
- Therapy if resistance known
 - Tailor to specific resistance pattern
- IF failure or relapse, while waiting...
 - Always give two new drugs
 - Usually Quinolone and injectable

Association of Initial	drug resistance
with Treatment	t outcomes

(from multivariate meta-regression)

	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance IRR (95% CI)
Pan Sensitive	1.0 (reference)	1.0(reference)	1.0(reference)
Initially SDR	12 (7 – 20)	2.3 (1.7 – 3.0)	7 (4.5 – 12)
Initially PDR	47 (22 – 103)	2.3 (1.3 – 4.2)	29 (15 – 58)
			23

Multi-Drug resistance - therapy

- MDR = Resistance to INH & RIF
- High rates of failure & relapse (20%)
- High mortality (10-20%)
- Success rates: average 60%

TB drugs: Serious adverse effects

- INH Hepatitis, Rash, Neuropathy (B6)
- RIF Rash, Drug Interactions, Hematologic, Hepatitis
- PZA Rash, Hepatitis, Arthralgias, Uric acid (gout)
- EMB Optic neuritis, rash
- Injectables Renal, oto-toxicity

Serious adverse effects management

- Step 1: Stop all possible drugs
- Step 2: Immediately start enough new drugs to ensure adequate therapy (minimum 2 drugs at all times)
- Step 3: When effect resolves re-introduce in reverse order of probability of causation

Serious adverse effects management

- Cause of rash: PZA>RIF>INH>EMB
- So start with INH or RIF
 - If no rash add second, etc
 - Speed every 3-4 days
- Cause of hepatitis: PZA>INH>RIF
- So start with RIF, then INH
 - Speed every 2 weeks (much slower)
 - If no hepatitis with INH/RIF do not give PZA

