The etiology of tuberculosis: *Mycobacterium tuberculosis*

Marcel A. Behr marcel.behr@mcgill.ca www.molepi.mcgill.ca

TB etiology: overview

- Top-down exploration:
 - Genus: Mycobacteria
 - Species: Mycobacterium tuberculosis complex
 - Subspecies: Mycobacterium tuberculosis
 - Strains: *M. tb* around the world
- Pending questions

The genus Mycobacteria

- Mycobacteria named for mycolic acids
 - Very long fatty acids in the cell wall
 - Affect their staining properties for microscopy
- Currently ~ 150 species
 - More named each year (sampling, naming)
- Vast majority of mycobacteria are nonpathogenic:
 - soil & water organisms
- Small number of pathogens

Pathogenic Mycobacteria

- Subset of mycobacteria that can cause disease in a eukaryotic host
- Some naturally live in the environment, e.g. *M. avium*
- Some have evolved to live with their eukaryotic host, e.g. *M. tuberculosis*
- Place of residence conceptually affects how we approach disease control

<section-header><section-header>

Non-tubercuous Mycobacteria pathogenic to humans

- ♦ Cause disease in humans
- ♦ Are <u>not</u> spread from person to person
 - Mycobacterium avium
 - » Disseminated disease in AIDS
 - » Lymph node disease in children
 - *M. avium* subsp. *paratuberculosis*:
 - » Hypothesized role in Crohn's disease
 - M. kansasii
 - » TB-like disease in coal miners
 - M. ulcerans
 - » Cause of Buruli ulcer (Bairnsdale ulcer)

Mycobacterium tuberculosis complex

- M. tuberculosis, M. bovis, M. caprae, M. microti, M. africanum...
 - Agents of TB in mammalian hosts
- Identical by 16s rRNA sequence
- Homology in other genes > 99%
 - Thus, one species (MTC)
 - But, each retains name by convention

M. tuberculosis complex (MTC)

Host-adapted members of MTC

- People can get TB due to *M. bovis*
- However, MTC organisms only spread efficiently in their particular host
 - E.g. When livestock TB is controlled, *M. bovis* disease is eliminated from human population
- The basis of host adaptation is not well understood
 - In vivo co-evolution
 - *M. tuberculosis* first used as vaccine in cows
 - The human vaccine was derived from *M. bovis*

Lab-adapted BCG vaccine

- BCG = Bacillus of Calmette and Guerin
- Derived during studies on bovine TB
 - 1. Intestinal inoculation with *M. bovis* caused pulmonary TB via lymphatic spread
 - 2. Hard to infect animals, need to grind bacteria into a fine emulsion
 - 3. Try to grow bacteria in presence of bile to get rid of clumps
 - 4. Observe for a strain that was less virulent
 - 5. Voila! A vaccine candidate

BCG vaccines: Controversy and opportunity

Facts:

- ◆ > 100 million doses/year
- Less virulent than *M. bovis*

Major unknowns:

Policy: Do they prevent TB? Which forms? How long?

Opportunity:

- Bacterial pathogenesis: Why are they of attenuated virulence?
- How genetics: Why do some people get sick from BCG vaccine?

M.tb. vs. BCG: Tale of two bacilli

Attribute	M. tuberculosis	M. bovis BCG
Birthplace	Africa	France
Birthdate	Paleolithic	3 rd Republic (1908)
Home	Host macrophage	Vaccine lab
Job	Cause disease	Prevent disease
Infected	2 billion people	100 million / year
Disease	1 in 10	1 in 100,000
Relatedness	>99% genetic identity	

MTC variants in Montreal

- In Mtl., > 98% of TB due to *M. tuberculosis* Less data in places where livestock TB has not been controlled
- Some cases of *M. caprae*, *M. africanum* since LSPQ began testing for these
 Clinical importance of distinction not yet clear
- ♦ M. bovis is pyrazinamide resistant

♦ M. bovis BCG:

- » In child: HIV test and an immunology consult
 - » In adult: associated with treatment of bladder cancer

MTC variants around the world

- In post-genomic era, now apparent that there are different strains that predominate in different parts of the world
- ♦ Two questions:
 - Are these real associations?
 » As opposed to artifacts of study populations
 - Are these meaningful?
 - » Can we envision different management

Deletion-based MTC phylogeny				
	Anesetral tubercle lealillue RD9 RD9 RD7, RD6, RD12, RD13, N-RD25 R04 R07 R07 R07 R04 R07 R07 R07	M. canéti M. tuberculosis M. africenum (a) M. africenum (b) M. mikreti dassis betillus oryx betillus oryx betillus M. pinnipedii M. capree M. bovfs (c) M. bovfs (c) M. bovfs (c) M. bovfs (c) M. bovfs (c)		
	Derived tubercle bacillus Mostowy et al., J Bact, 2005			

Selected contributions

What strains of bacteria cause TB in Montreal?

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

TB etiology: overview

- Genus: Mycobacteria

 Many organisms, few pathogenic
- Species: Mycobacterium tuberculosis complex
 - Host-associated agents of TB
- Subspecies: Mycobacterium tuberculosis

 Rarely M. africanum, M. caprae, M. bovis
- Strains: Mostly Euro-American strains here in Mtl.
 - We have the Beijing strain, but it does nothing remarkable in our community

- Host-pathogen fits
 - » Is the genetic predisposition of the host linked to the bacterial profile?
- We have had TB for thousands of years
 - » Is it only bad? Is there some benefit?

Thank you

◆ Questions: marcel.behr@mcgill.ca