Treatment of Active Tuberculosis Montreal TB Course, November 26, 2010

> Dr. Dick Menzies Montreal Chest Institute dick.menzies@mcgill.ca

Overview

- TB drugs what they do (good and bad)
- Goals of TB treatment
- Standard TB treatment
- Intermittent treatment and DOT
- Drug resistance how it develops
 - How to treat (briefly)

TB Drugs: Rifampin (RIF)

- Introduced in 1970
- The most effective and important TB drug – Allows shortening of therapy to half
- Bactericidal, and sterilizing
- Side effects: Drug interactions
 - Rash
 - Hepatitis
 - Hematologic

Serious Adverse Events with INH or RIF			
(RCT of single d	rugs used :	tor Latent 1	<u>(B)</u>
	4 RIF	9 INH	P-
	(N=420)	(N=427)	value
All Grades – Total (%) *	16 (3.8%)	24 (5.6%)	NS
Grade 3 to 4 - Total	6 (1.5%)	17 (4.0%)	.02
- Hepato-toxicity	3 (0.7%)	16 (3.8%)	.003
- Hematologic	1	1	-
- Drug Interaction	1	0	-
- Rash	1	0	-
Grade 1 to 2 - Total	11 (2.0%)	7 (1.6%)	NS
- Rash	8	4	NS
- GI intolerance	1	2	-
- Hematologic	2	0	-

TB Drugs: Isoniazid (INH)

- One of the oldest TB drugs introduced in 1950
- The second most important/effective drug
- Bactericidal
- Early activity important (first few days)
- Side effects: Hepatitis
 - Rash
 - Neuropathy, anemia, lupus-like

Age Specific Incidence of INH hepatitis

Age	Incidence of hepatitis
0-20	< 0.1%
21-34	0.3%
35-49	1.2%
49-64	2.3%
65 +	>5%

TB Drugs: Pyrazinamide (PZA)

- Introduced in 1980
- The 3rd most important TB drug

 Allows shortening of therapy by 3 months
- Bactericidal, but only early effect
- Side effects: Hepatitis
 - -Rash
 - Arthralgias (Pains but not arthritis)

- Introduced in 1960
- The least effective 1st line TB drug
 ONLY to protect against resistance
- Bacteriostatic
- Side effects: Optic neuritis (blindness)
 Rash

Goals of TB Treatment

1. Reduce further morbidity and prevent mortality

Get better as quickly as possible

- 2. Reduce contagiousness Reduce bacillary load quickly
- 3. Prevent emergence of drug resistance
- 4. Prevent relapse (long term cure)

Building a TB regimen

- 1. Get better quickly:
 - INH Most important in first week
 - RIF Bactericidal effect through-out therapy
 - PZA –if given for 1st 2 months can shorten total therapy to 6 months
 - Add other drugs? will not make patients better faster
- First two months are critical = initial intensive phase

Association of Number of drugs in regimen and Treatment outcomes (from multivariate meta-regression)				
	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance† IRR (95% CI)	
Initial phase <u>≤</u> 3	1.0 (reference)	1.0(reference)	1.0 (reference)	
Initial phase ≥ 4	0.4 (0.2 – 0.7)	0.9 (0.6 – 1.3)	0.4 (0.2 – 0.7)	
Continuation = 2	1.0 (reference)	1.0(reference)	1.0(reference)	
Continuation \geq 3	0.5 (0.3 – 0.9)	0.9 (0.7 – 1.2)	0.5 (0.3 – 0.9)	
			13	

Building a TB regimen

3. Long term cure = prevent relapse RIF – more RIF = less relapse After first 2 months – 2 drugs enough INH & RIF

Rifampin duration	Arms (N)	Pooled event rate	95% Conf Interval
No Rifampin	43	11.8%	8.8 – 15
1-2 months	66	11.6%	8.9 – 14
3-5 months	22	6.2%	4.2 - 8.2
6-7 months	131	5.5%	4.8 - 6.3
8+ months	25	1.1%	0.3 – 1.9

Duration of Rifampin and Treatment outcomes

(from multivariate meta-regression)

Duration of RIF	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance IRR (95% CI)
2 Months	2.2 (0.7 – 7.2)	18.6 (7.4 – 47)	7.9 (2.4 – 26)
3-5 months	2.5 (0.7 – 8.4)	9.4 (3.3 – 26)	3.2 (0.7 – 14)
6 Months	0.6 (0.2 – 1.7)	6.6 (2.7 – 16)	2.0 (0.7 - 6.0)
\geq 8 Months	1.0 (reference)	1.0 (reference)	1.0(reference)
			16

Reducing relapse

- Longer therapy (8-9 months total) reduces relapse
 But 2-3 months extra in all patients = risk,cost,work
- Who to choose = risk factors for relapse
 - More extensive disease at start (AFB+, Cavities)
 - Smear/culture positive at 2 months
 - Cavities at 2 months, or 5 months
 - HIV infected ?

Summary points - current therapy

- Initial intensive phase
 - Two months duration is optimal
 - Minimum 3 drugs (4 is better)
 - INH most potent bactericidal agent
 - RIF second most potent, least resistance
 - PZA allows total therapy to be 6 mos only
 - EMB protects against resistance
- Continuation phase
 - Four months minimum, 6-7 months reduces relapse
 - 2 drugs minimum

Intermittent therapy

- Possible because of long half life of drugs
- And slow growth of M TB
- Intermittent therapy does work
 - In-vitro (cultures only)
 - In animal studies
 - In humans randomized trials
- What is the lowest frequency?
- How early can it start?

Intermittent regimens and Failure

Administration of drugs	Arms (N)	Pooled event rate	95% Conf Interval
Daily – all	173	2.6%	1.8 – 3.4
Daily – then intermittent	76	2.0%	0.4 – 3.7
Intermittent all – thrice weekly	53	2.7%	0.1 - 4.4
Intermittent all – twice weekly	17	8.8%	1.5 – 16 ²⁰

Intermittent regimens and Relapse			
Administration of drugs	Arms (N)	Pooled event rate	95% Conf Interval
Daily – all	149	6.7%	5.4 - 8.0
Daily – then intermittent	65	7.0%	5.1 – 8.9
Intermittent all – thrice weekly	52	6.8%	5.6 - 8.1
Intermittent all – twice weekly	17	10.7%	7.2 – 14.3 ²¹

Intermittent therapy and outcomes – from		
Meta-regression		
(RCT in New cases with RIF)		

Intermittent schedule	Failure IRR (95% Cl)	Relapse IRR (95% CI)	ADR IRR (95% CI)
Daily throughout	1.0 (reference)	1.0 (reference)	1.0(reference)
Daily then thrice weekly	0.8 (0.5, 1.3)	1.0 (0.7, 1.3)	0.9 (0.4, 1.8)
Daily then twice weekly	1.3 (0.9, 1.8)	0.8 (0.7, 1.1)	0.7 (0.4, 1.1)
Thrice weekly throughout	1.3 (0.97, 1.7)	1.1 (0.9, 1.3)	4.9 (3.3, 7.4)
			22

In patients with HIV-TB Effect of Intermittent regimens on Relapse

Use of Intermittent therapy	Studies	Event/ Subjects (N)	Pooled event rate	(95% CI)
Daily Initially	23	156/1303	7.7%	(1.7, 13.6)
Intermittent through-out	7	35/323	14.4%	(0, 32.8)

Intermittent therapy and Treatment outcomes - INH resistance

(from multivariate meta-regression)

	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance IRR (95% CI)
Daily Initially	1.0 (reference)	1.0(reference)	1.0(reference)
3X weekly thru-out	3.0 (2.0, 4.5)	1.5 (0.9, 2.5)	2.4 (1.4, 4.2)
2X weekly thru-out	2.4 (1.6, 3.5)	4.5 (1.9, 10.7)	1.5 (0.9, 2.5)
			24

Summary - Intermittent therapy

• Intermittent regimens facilitates DOT

- Once weekly = totally unacceptable
- Twice weekly = worse results
- Thrice weekly = slightly worse
 - OK under ideal conditions
 - BUT worse if HIV infected or drug resistant

• Best is daily therapy in first two months

- Then can switch to intermittent
- If self-administered give daily

Emergence of resistance Therapy with one drug (First ever TB trial)

- In 1950 first TB trial was conducted in Britain.
- 109 patients received Streptomycin only
 Only drug available at the time
- Resistance developed rapidly in these patients
 - First detected after three weeks
 - 60% resistant after two months
 - 80% resistant after three months

Rate of spontaneous mutations of M Tuberculosis to anti-TB drugs

Streptomycin	10-6
Isoniazid	10⁻⁶ - 10 ⁻⁷
Rifampin	10 ⁻⁸ - 10 ⁻⁹
Ethambutol	10 ⁻⁷ - 10 ⁻⁸
INH&Rif	10-14

15

Total number of bacilli – in
different lesions

Latent TB	10 ³
Infiltrates	10⁶ - 10⁷
Cavity (one)	10 ⁸ - 10 ⁹
Multi-cavities	10^{10} - 10^{12}
Death	10 ¹³
	31

Probability of developing resistance during therapy

Number of Drugs	Total number of bacilli				
	104	10 ⁶	108	10 ¹⁰	1012
One	1%	63%	100%	100%	100%
Two	0	0	.01%	1%	60%
Three	0	0	0	0	0
					32

Drug resistance - prevention and therapy

- To prevent resistance:
 - Minimum two drugs
 - Give at least 3 when bacillary load is high
 - 4 drugs offer better protection
- Therapy if resistance known
 - Tailor to specific resistance pattern
- IF failure or relapse, while waiting...
 - Always give two new drugs
 - Usually Quinolone and injectable

Association of Initial drug resistance
with Treatment outcomes

(from multivariate meta-regression)

	Failure IRR (95% CI)	Relapse IRR (95% CI)	Acquired drug resistance IRR (95% CI)
Pan Sensitive	1.0 (reference)	1.0(reference)	1.0(reference)
Initially SDR	12 (7 – 20)	2.3 (1.7 – 3.0)	7 (4.5 – 12)
Initially PDR	47 (22 – 103)	2.3 (1.3 – 4.2)	29 (15 – 58)
			35

Multi-Drug resistance - therapy

- MDR = Resistance to INH & RIF
- High rates of failure & relapse (20%)
- High mortality (10-20%)
- Success rates: average 60%

TB drugs: Serious adverse effects

- INH Hepatitis, Rash, Neuropathy (B6)
- RIF Drug Interactions, Hematologic, Rash, Hepatitis
- PZA Rash, Hepatitis, Arthralgias, Uric acid (gout)
- EMB Optic neuritis, rash
- Injectables Renal, oto-toxicity

Serious adverse effects management

- Step 1: Stop all possible drugs
- Step 2: Immediately start enough new drugs to ensure adequate therapy (minimum 2 drugs at all times) = Quinolone + EMB or Injectable
- Step 3: When effect resolves re-introduce in reverse order of probability of causation

Serious adverse effects management

- Cause of rash: PZA>RIF>INH>EMB
- So start with most important drugs AND least likely = RIF or INH
 - If no rash add second, etc
 - Speed one drug added back every 3-4 days
- Cause of hepatitis: PZA>INH>RIF
- So start with RIF, then INH
 - Speed one drug every 2 weeks (much slower)
 - If no hepatitis with INH/RIF do not give PZA

Mortality from INH hepatitis

Study	Years	Age	Mortality (per 100,000)
USPHS surveillance	1971-72	< 35	0
		> 35	98
IUAT trial	1969-72	35-65	14
CDC surveillance	1972-3	All	54
	1974-83	All	14
	1984-8	All	6
Salpeter survey	1983-92	< 35	0.6
		> 35	2.4

Duration of I efficacy/	NH Therapy an effectiveness	d
Patients with	Fibrotic Lesior	IS
Population	Duration Re	<u>duction</u> in TB
All participants	INH 12 mo. INH 6 mo. INH 3 mo.	75% 65% 21%
Completer/compliers	INH 12 mo. INH 6 mo. INH 3 mo.	93% 69% 31%
Bull WHO 1982;555-64		45

Problems with INH

1. Length - 9 months ideal

- Results in poor compliance less than 50% in most programs.
- 2. Drug induced hepatitis rarely fatal.
 - Also rash, neuropathies
- 3. Costs INH is cheap but close follow up is necessary and this is expensive

6 Months Rifampin Mono-Therapy (For contacts of INH resistant cases)

(Polesky et al., AJRCCM; 1996: 155: 1735-38

- Homeless persons in Boston, screened in shelters
- Extended Outbreak of INH resistant TB
- 204 Exposed persons with documented TST conversion
- Therapy of LTBI was not randomized
- 71 no therapy **8.6%** active TB
- 38 given INH **7.9%** active TB (INH Resistant)
- 86 RIF or INH/RIF 0 active TB
 - 49 Rifampin only no hepatitis or increased LFT's

4 months Rifampin vs 9 months INH

A retrospective review (non-randomized) (Page et al, Archives Int Med; 2006; 166: 1863-1870)

	9 INH	4 RIF	(Pvalue)
Patients taking therapy	770	1379	
Percent completing	53%	72%	(.001)
Permanent D/C therapy	4.6%	1.9%	(.001)
Rash	2.1%	1.6%	(NS)
Nausea/Vomiting	2.8%	2.4%	(NS)
Hepatitis – Grade 3/4	1.8%	.08%	(.001)
Hepatitis – Grade 3/4	1.8%	.08%	(.0

RCT	of 4R	IF vs	. 9INH	for	LTBI
		Pha	se 1		

	9 INH (N=58)	4 RIF (N=58)
Completed Rx good compliance, N(%)	36 (62%) ¹	50 (86%) ¹
Completed Rx poor compliance, N(%)	8 (14%)	3 (5%)
Did not complete Rx, N(%)	14 (24%) ¹	4 (7%) ¹
MD stopped b/o Side effects N(%)	8 (14%)	2 (3%)
< 90% of doses correct at 1 month, N(%)	20 (34%)	12
		(21%)
¹ P-value = 0.01	Annaise at al. All	

RCT of 4RIF vs. 9INH for LTBI – Phase 2 Completion of Therapy			
	4 RIF (N=420)	9 INH (N=427)	P- value
Completed Therapy	328 (78%)	254 (60%)	<.000
Patient Non-compliant (Total) - Drop-out - Intolerance	75 (18%) 49 (12%) 17 (4%)	144 (34%) 77 (18%) 51 (12%)	
MD Non-compliant	9 (2%)	16 (4%)	

Serious Adverse (RCT of single d	Events wi rugs used	th INH or F for Latent 7	RIF FB)
	4 RIF	9 INH	P-
	(N=420)	(N=427)	value
All Grades – Total (%) *	16 (3.8%)	24 (5.6%)	NS
Grade 3 to 4 - Total	6 (1.5%)	17 (4.0%)	.02
- Hepato-toxicity	3 (0.7%)	16 (3.8%)	.003
- Hematologic	1	1	-
- Drug Interaction	1	0	-
- Rash	1	0	-
Grade 1 to 2 - Total	11 (2.0%)	7 (1.6%)	NS
- Rash	8	4	NS
- GI intolerance	1	2	-
- Hematologic	2	0	-

4RIF vs. 9INH for LTBI Conclusions

4 months Rifampin appears promising!

- Serious adverse events significantly less
 - Particularly for grade 3 to 4 hepatitis
 - The most important/lethal complication
 - But hematologic effects will need monitoring.
- Completion significantly better with 4RIF
- Costs lower with 4RIF
 - Drug costs still excessive with 4RIF

