# From Clinical Observations to Experimental Research

Hierarchy of Study Designs

Dr. Dick Menzies July 14<sup>th</sup>, 2014

# Hierarchy of study designs

- Descriptive studies
  - Case reports, and case series
  - Reported data, and Prevalence surveys
- Analytic studies
  - Observational
    - Cross-sectional
    - Ecologic studies
    - Case control studies
    - Cohort studies
  - Experimental studies
    - Uncontrolled trials
    - Randomized or quasi-randomized controlled trials
      - Individual level
      - Field trials community or group level

### The starting point – an Observation

- Usually a clinical observation
  - An unusual case (young woman with PE)
  - An unusual cluster (3 homosexual men with PCP)
  - An unusual complication (ICU admissions for C Dif)
- Or, an observation based on reported data
  - Temporal trend (Increase in Lung cancer rates)
  - Geographic clustering (MS, gastric Ca)

# Case Reports

- Report of a single occurrence of new disease or unusual occurrence of a known disease
  - Pulmonary embolus in young woman on oral contraceptives
  - Myocardial infarction in a child
- Strengths
  - Rapid and cheap
  - Useful to alert community to a new disease
  - Particularly if others are seeing the same thing.
- Weaknesses
  - Rare events do happen Someone always wins the lottery
  - Clinicians have to recognize that the problem seen is unusual. Requires genuine expertise

#### Case series

- This means 3 or more of the same condition
  - Unusual events as for case reports
  - Generally adds a little more than case reports
  - More cases equals potentially more weight
- But, rare events can also happen together
  - 3 cases of Angiosarcoma in workers from a PVC factory
  - Lightning strikes the same person twice
  - Three people on same street win lottery
  - All have occurred. Was one NOT due to chance?

#### Case series – example

Extensively drug-resistant tuberculosis as a cause of death in patients with TB and HIV in rural South Africa

Neel R Gandhi, Anthony Moll, A Willem Sturm, Robert Pawinski,
Thiloshini Govender, Umesh Lalloo, Kimberly Zeller, Jason Andrews,

Gerald Friedland

- Among 475 patients with culture-confirmed TB:
  - 39% (185 patients) MDR-TB
  - 6% (30 patients) XDR-TB.
- Of XDR-TB:
  - 45% had been previously treated for TB;
  - 67% had a recent hospital admission.
  - 100% of tested for HIV were co-infected.
  - 98% died, with median survival of 16 days

### Large Case Series

- Description of a large number of patients with a new disease, or receiving a new treatment or new operation.
- Advantages Comprehensive Includes all cases
- Disadvantages No controls or comparison population
  - Implicit comparison with standard, or previous therapy
  - Historical controls or concurrent non-randomized controls
- Thus better results can be because:
  - The new treatment IS better,
- BUT could be,
  - Better selection of patients
  - Other improvements in care, or better care at specialized centre

# After the case report/case series. Need to review and understand disease

- 1. Case definition
  - Who gets it, clinical features, outcomes?
- 2. What appears to be the biology?
  - Apparent latency
  - Manifestations what organs affected
  - Pathogenesis probable or known
- 3. Review the literature
  - This is often forgotten, or under-utilized
  - But is essential to avoid mistakes and wasting time

#### Population characteristics – who gets the disease?



Figure 7-12. Incidence rates of mongolism by maternal age at birth from selected studies, 1923-1964

Source: Lilienfeld (20). Copyright @ 1969, The Johns Hopkins University Press.

# Understanding the disease - latency and duration

- Latency refers to interval between exposure and disease.
- Plausible that exposure leads to disease if interval from exposure to disease fits with known latency

### Latency and clinical acumen

- The shorter the latency the easier to link exposure and disease
  - Immediate eg Grain workers and asthma
  - <24 hours "must have been the egg salad"</p>
  - < 1 week "I think I caught this from Fred"</p>
  - If longer it gets harder. "So many exposures, so much time, and so little memory" (recall)
    - Asbestos and mesothelioma
    - Smoking and most diseases



Distribution of incubation in common-source outbreak from gravy contaminated with *Clostridium perfringens*.

### Reported Data

- Reported data commonly used
  - TB, HIV, Cancers
  - Useful if this is COMPLETE
- Useful to:
  - Define incidence/prevalence
  - Identify geographic or temporal differences
  - Describe clinical characteristics
  - Describe outcomes.
- Implicit comparison with general population
  - Risk factors can be identified.

Temporal trends may indicate clues to causal exposure



Coal use  $(- \bigstar)$  and TB incidence  $(- \bigstar)$ .

# Temporal trends may indicate clues to causal exposure Coal use and TB in China: 1978 - 2004



# **Ecologic Studies**

#### <u>Advantages</u>

- Usually very easy and quick studies
- Take advantage of already gathered data
  - Exposures
  - Diseases

#### <u>Disadvantages</u>

- Relationship may be due to completely unmeasured factors
- VERY substantial potential for confounding

Ecologic study – Geographic distribution may indicate clues to exposures: Skin test sensitivity to coccidiomycosis and place of residence



Figure 7-9. Percent reactors to coccidioidin skin test among white men and women, 17-21 years of age, by county of residence, United States, 1945-1951

Source: Edwards and Palmer (11).

### Directionality in research - Backward

- Retrospective: Start with a persons with disease and 'look backward' in time to ascertain exposures.
- Advantages: Biggest is convenience do not have to wait a long time, because disease HAS happened.
  - Makes these studies much quicker to complete, and much cheaper.

# Observational studies – You gather the data:

- Prevalence surveys Easy to design,
   Moderately time consuming and expensive to conduct
- Case-control hard to design,
   Quick and easy to conduct
- Cohort studies moderately hard to design.
   Very time-consuming and expensive to conduct

# Directionality in research - Forward

- Prospective: Start with a population and observe them 'going forward' in time.
   Exposures are measured first, and health events are measured afterward, as they occur.
- Advantages: Biggest is accuracy of exposure
  - Also certainty that exposure is followed by disease, not simply coincidental

# Retrospective designs: Prevalence or cross-sectional studies

#### **General approach:**

- Pick a disease (can pick several)
- Identify the possible exposures (can pick several)
- Pick a population (one time survey)
- Data gathering:
  - Measure who has the disease
  - Measure who has the exposure.
- Analysis: Association of disease presence with exposure presence (Prevalence odds ratio)

# Cross-sectional or Prevalence Studies (continued)

#### **Advantages**

- Good for common/chronic diseases
- Also good for fairly common exposures
- Allows one to measure multiple disease or conditions and multiple exposures

#### **Disadvantages**

- Measurement of exposure often difficult
  - Recall problems if long latency
  - May change over time (Alcohol, smoking, blood pressure)
- Can not distinguish cause and effect
  - (Tobacco Industry defense)

# Tuberculin (or IGRA) Surveys A special type of cross-sectional survey

- Once TST or IGRA convert to positive with TB infection they remain positive lifelong
- Cross-sectional survey detects all with positive tests from recent or remote
- From prevalence of positive test at a given age can calculate average annual risk of TB infection.
- Can compare prevalence in different populations
- If different ages, or different exposure periods can estimate trends in infection

# Does Size matter? Relationship of patient's diagnosis to size of TST

(from Al-Zahrani et al AJRCCM, 2000)



#### University students in Brazil

(All BCG vaccinated in infancy) Silva et.al. IJTLD2000; 4:420-426



Years of training

Average ARI: Preclinical 0.2%

Clinical 2.9%

Incidence of TB in Brazil: 75/100 000

# Example of Kaplan-Meier analysis: General Hospital Ventilation and time to TST conversion



# Retrospective Analytic Studies: Case Control

#### General design

- Identify Cases patients with disease
- Identify Controls without disease
- Measure exposures in both
- Analysis is exposure more likely (odds > 1) in cases than controls

# Case Control study – example TB outbreak in Kangiqsualuujuaq

Factors associated with acquisition of TB infection during the outbreak.

| Variable                           | Newly<br>Infected, N=88<br>N(%) | Uninfected,<br>N=67<br>N(%) | Crude OR<br>(95CI) | Adjusted OR<br>(95CI) |
|------------------------------------|---------------------------------|-----------------------------|--------------------|-----------------------|
| Age 15                             | 24 (27)                         | 34 (51)                     | ref                | ref                   |
| Age 15 - 29 y.o.                   | 41 (47)                         | 26 (39)                     | 3.8 (2.1 - 6.9)    | 4.2 (1.7 - 10.3)      |
| Age ≥ 30 y.o.                      | 23 (26)                         | 7 (10)                      | 4.2 (1.5 - 12)     | 5.0 (0.8 - 30)        |
| Visited a gathering house          | 47 (53)                         | 16 (24)                     | 3.7 (1.6 - 8.1)    | 3.6 (1.3 - 9.9)       |
| Lived with smear-positive person** | 20 (23)                         | 1 (1)                       | 19 (3.3 - 113)     | 20 (4.0 - 100)        |

#### **Case Control Studies**

#### **Advantages**

- Relatively cheap and quick
- Particularly useful for studying rare conditions
  - Or conditions with long latency

#### <u>Disadvantages</u>

- Controls, Controls
  - Very difficult to select proper controls
  - This is the source of most problems in case control studies
  - And is why they are generally considered weak evidence.
- Difficulties of retrospective exposure assessment
  - particularly if long latency

# Analytic Studies – Cohort studies

#### General design

- Start with population free of disease (of interest)
- Measure of interest
- Follow them for a period of time
- Measure occurrence of disease
- Analysis occurrence of disease in persons who had/did not have exposure of interest

# Average Annual Incidence of Tuberculosis Among Navy Recruits By History of Household Contact



Comstock, Edwards, and Livesay; Am Rev Respir Dis 1974; 110:576

#### **Cohort Studies**

#### <u>Advantages</u>

- Can measure many exposures
- Can measure many diseases
- Temporal relationship clearer (cause before disease)

#### **Disadvantages**

- Long and expensive (often very \$\$\$)
- Good for common diseases (some cancers, cardiovascular)
- Inefficient for rare diseases or with long latency
- Also what if you fail to measure key determinants
  - (Solution = freezer)

### **Experimental Studies:**

#### **Uncontrolled**

- No control or comparison group
- Phase 1 or Phase 2 drug trials

# **Experimental Studies:**

#### **Controlled Trials**

- Non-randomized allocation to different not done randomly, but rather purposely
- Quasi-randomized allocation to intervention groups not randomly, but using schemes such as: date of birth, days of week, hospital records
- Randomized allocation is random so all participants have equal chance of getting each intervention

# Experimental Studies – Randomized Trials

#### General Design

- Pick an intervention usually a form of treatment
  - You can only pick one
- Find a group of patients that agree to participate
  - Have to be representative of condition
- Give the new treatment to some
  - Some get the old (or no) treatment
  - Do this randomly
- Follow all to see outcomes

#### Randomized Trials

Intensified regimen containing RIF and Mfx for TB meningitis: an open-label, randomised controlled phase 2 trial Rovina Ruslami\*, A Rizal Ganiem\*, Sofiati Dian, Lika Apriani, Tri Hanggono Achmad, Andre J van der Ven, George Borm, Rob E Aarnoutse, Reinout van Crevel

- Open-label, phase 2 trial. Factorial design
- Patients aged >14 with TB meningitis
  - All received INH & PZA & Steroids
- Randomly assigned for 14 days by computer-generated schedule:
  - RIF: 450 mg vs 600 mg, intravenously, and
  - Mfx 400 mg, or Mfx 800 mg, or EMB 750 mg daily.
- 14 days of treatment all patients, then routine treatment.
- Endpoints: PK analyses (blood and CSF) adverse events attributable to tuberculosis treatment, and survival.

#### Randomized Trials

### <u>Advantages</u>

- Best way to evaluate an intervention
- Best control of bias and confounding

### <u>Disadvantages</u>

- Not easy or feasible for all interventions
- Not for studies of risk factors or natural history
- Substantial refusal or drop-out rates can restrict generalizability
- Population selected may not be representative
  - Younger adults with only one condition
  - Often exclude pregnant woman, kids, elderly!

# Experimental Community or Field Trials

#### General Design

- Pick an intervention to be applied at a community level
  - Fluoride in water, public education, vaccination
- Find several communities or population groups
- Apply intervention to some and not others
  - Randomly again
- Measure outcomes at population or group level

#### <u>Cluster randomized Trials – example</u>

Effect of improved tuberculosis screening and isoniazid preventive therapy on incidence of tuberculosis and death in patients with HIV in clinics in Rio de Janeiro, Brazil: a stepped wedge, cluster-randomised trial

Betina Durovni, Valeria Saraceni, Lawrence H Moulton, Antonio G Pacheco, Solange C Cavalcante, Bonnie S King, Silvia Cohn, Anne Efron, Richard E Chaisson, Jonathan E Golub

- 29 HIV clinics in Rio de Janeiro.
- Staff trained in TB screening, TST and INH.
- Clinics randomly allocated when began the intervention period. 2 clinics started every 2 months starting from Sept 2005, until Aug 2009
- Outcome: TB incidence +/- death

# Community or Field Trials

#### <u>Advantages</u>

- Only way to study some interventions
- May offer better assessment of likely impact of these interventions

#### <u>Disadvantages</u>

- All the same problems as ecologic studies
- Also some important ethical issues (eg., fluoride)

### **Thanks**