Application of DNA-based methods to epidemiology of TB

Marcel A. Behr
Professor, McGill University
Director, McGill Int. TB Centre
marcel.behr@mcgill.ca
Planes of molepi study

Individual = Clinician
Defined outbreak = Disease Control
Population = Epidemiologist
Some questions addressed by genotyping methods

- Clinical:
 - Reasons for treatment failure?

- Immunology:
 - Are TB patients protected from TB?

- Epidemiology:
 - TB due to recent transmission?

- Bacteriology:
 - Do all strains behave equally?

- History:
 - How did TB spread around the globe?
Clinical: Molepi of recurrence

- TB, Rx then TB again
 - Is it relapse? Clinic problem
 - Is it reinfection? Public health problem
- Change in antibiotic resistance
 - Could be acquired drug-resistance
- No change in antibiotic resistance
 - Could be a new strain
- Antibiotic phenotype unreliable to judge relapse vs. reinfection
RFLP of DS to MDR-TB

Relapses have original strain

Reinfections - ‘house’ strain

Small et al., NEJM, 1993
Classification of recurrence

- Compare initial to recurrent isolate
 - Match = Relapse
 - Different = Reinfection

- South Africa:
 - 75% of those with recurrent TB after treatment have reinfection (new strain)
 - Van Rie, NEJM, 1999
 - Cases classified by WHO as acquired drug resistance were reinfection
 - Van Rie, Lancet, 2000
Relapse vs reinfection

- Distinction critical in RCTs
 - Reinfection cases would otherwise decrease estimated efficacy of therapy
- Standard now is to include first and recurrent isolate in studies
- Most recently done using Whole Genome Sequencing
 - Relapse vs. Reinfection vs. Mixed infection

Immunology of recurrent TB

- People with prior positive TST have lower rate of TB
 - TB infection protects against new TB
 - TB infection is a marker of a survivor

- Does treated TB disease confer protection against new TB?
 - Practical importance
 - TB contacts previously treated for TB?
 - Immunologic value
 - Can we make a vaccine?
Immunology: TB again

- To determine risk of new TB, need to distinguish relapse from reinfection
 - Exclude treatment failure; new infection only
- Capetown study
 - Previously treated with new RFLP
 - 5x rate of TB compared to community
 - Suggests that those who could not control bacteria first time cannot control it the next time
 - Verver, Am J Resp CCM, 2004
 - I am unaware of any other study that has looked at this….yet
Epidemiology: Outbreaks

- Case 1 & 2 unrelated
- 3 started outbreak
- 12 cases in 100 days
- Min. incubation period < 4 weeks

From Daley et al., NEJM 1992
Outbreaks in a population

- Outbreak isolates share genotypes
- Therefore: If all isolates in city typed, those with same genotype are ‘outbreaks’
- Called clusters:
 - Percent cases in community clustered a proxy for ongoing transmission
 - Risk factors for clustering used to guide interventions

Small et al, NEJM, 1994
Alland et al, NEJM, 1994
Sampling matters

- Clustering studied in epidemiologically-defined space and time
 - Years better than months
 - Island is ideal
- ‘Edge effects’ reduce clustering
- Undersampling reduces clustering
 - 1000 people: 449500 pairwise tests
 - 800 isolates: 63% of pairs tested
 - 600 isolates: 36% of pairs tested
- Risk of bias, depending on source of isolates
Studies of TB clustering

- **Outcome measured:**
 - Typically proportion/percent TB clustered
 - Occasionally incidence of clustered TB

- **Who is in clusters?**
 - Typically test risk factors
 - E.g. HIV, homeless
 - Occasionally ask targeted question
 - E.g. smear-negative cases (Behr, 1999)
Clustering varies

- **Over place**
 - San Francisco ~ 40%
 - Montreal ~ 10%
 - Capetown ~ 70%

- **Over time**
 - San Francisco:
 - Unique cases unchanged over time
 - Clustered cases dropped with enhanced TB control

Jasmer, Annals of Int Med, 1999
Risk factors for clustering vary

- Is HIV a risk factor for clustering?
- Prevalent HIV/AIDS with new TB case
 - Outbreak of recently transmitted TB
- Endemic TB with new HIV
 - HIV drives reactivation disease
- HIV is risk factor for
 - Transmission
 - Reactivation
 - Ratio of these two may go up or down
Bacteriology: Are there a more or less successful strains?

- Many reports of clinical/epidemiology observation associated with strain x
 - E.g. Beijing strain and drug resistance
 - E.g. CDC1551 strain and high % TST conversion among contacts
- Is one *M. tb.* strain more likely to develop drug-resistance?
- Is there a more virulent strain?
Bacteriology: Phenotypes

- Drug-resistance
 - In theory straightforward
 - In practice not consistent worldwide

- ‘Virulence’
 - If a strain kills mice faster, does this predict:
 - More transmissible?
 - Less transmissible?
 - Ideal scenario for TB transmission: keep host alive with chronic, transmissible disease
Bacteriology: Genotypes

- RFLP/MIRU/Spoligotype unreliable
- Deletions or SNPs best suited to ‘brand’ strains in a study

- In molepi studies, local-born generally associated with transmission
- Thus, local strains often look more transmissible – people vs. bacteria?
Bacteriology: Genotypes

- Many reports of strains associated with resistance or transmission
 - E.g. Beijing and DR-TB in Russia
- Many other reports where no association
 - E.g. Beijing and anything in Montreal
- Filter:
 - All isolates we study have most recently caused TB disease in a human
 - We don’t get to study bacteria that fail to infect or fail to progress to disease

Albanna, Plos One, 2011
Using deletions to track *M. tb.* strains from around the world

- In San Francisco, 50 unique strains and 50 clustered strains
 - Tested by Genechip to look for deletions
- Patterns emerge:
 - Countries generally have a dominant strain
 - Strains can be seen across many countries

Hirsh et al, PNAS, 2004
San Francisco
71% of TB cases
- 5 countries

Gagneux et al, PNAS, 2006
Geography and strains: Montreal

Montreal
60% of TB cases
- 7 countries

San Francisco
71% of TB cases
- 5 countries

Gagneux et al, PNAS, 2006

Reed M et al, J. Clin Micro, 2009
M. tb strains & place of birth: Montreal

Reed M et al, J. Clin Micro, 2009

M. tb. spread through the ages

- *M. tuberculosis* from Africa (all major lineages present)
- *M. tuberculosis* ‘walked’ out of Africa with the paleo-migration
- *M. tuberculosis* then ‘sailed’ out of Europe during colonization of Americas
- *M. tuberculosis* ‘canoed’ across Canada during the Fur Trade
M. *tb.*: pathogen and symbiont

- *M. tuberculosis* is a pathogen
 - Biomedical construct: causes disease
- *M. tuberculosis* is a symbiont
 - Biological construct: symbiosis is divergent organisms that live together

Veyrier et al, Trends in Micro, 2011
M. tb.: pathogen and symbiont

- *M. tb.* has been with us a very long time
 - Precarious balance
- When conditions favorable, TB rates go up
 - Countries with ↑ life expectancy have ↓ TB rates (early 20th century)
 - Countries with ↓ life expectancy have ↑ TB rates (late 20th century)

Oxlade, IJTLD, 2009
Lessons from TB about molepi

- The rate-limiting step in molecular epidemiology is.....the epidemiology
 - Need patient data, epidemiologic data, historical data to interpret

- Typing method used must be tailored to the question being asked
 - Hard to use rapidly evolving typing tools to study historical phenomena
 - Impossible to use branding tools that define lineages to track outbreaks of transmission
Questions?